
  

Thomas Neumann
Viktor Leis

A Critique of Modern 
SQL And A Proposal 
Towards A Simple and
Expressive Query 
Language

Nikolas Vattis
Antonis Katsiantonis



  

CONTENT
● Introduction
● A critique of Modern SQL
● SaneQL
● Conclusion



  

INTRODUCTION
● As of today, SQL is the predominant query language
● However, SQL faces design problems

– Problem 1 – English syntax, easy to read for simple 
queries, but hard to read for more complex queries

– Problem 2 – Lacks programming mechanisms such as 
Abstraction, Modularity, Extensibility

● The dominance of SQL may be at risk with the rise in 
popularity of dataframe APIs (pandas, polars)



  

CONTRIBUTIONS
● Provide a detailed critique on the modern SQL 

language
● Introduce SaneQL (Simple ANd Expressive 

Query Language) 

Introduction



  

A CRITIQUE OF MODERN SQL
● Modern SQL is critiqued using query examples
● Authors have collected 130998 queries from 

over 1000 students
● 38% resulted in an error on first execution
● Vast majority of failed executions were at 

compile-time



  

UNHELPFUL ERROR MESSAGES
● Most common error 

messages are not 
very helpful

● Error messages do 
not specify the 
problem, or how to 
fix it 

A CRITIQUE OF MODERN SQL



  

SYNTACTICALLY DIFFICULT CONSTRUCTS
● WITH

– Only 45% of queries 
containing WITH are 
successful

● VALUES
– Only 40% of queries 

containing VALUES are 
successful

A CRITIQUE OF MODERN SQL



  

TOO MANY KEYWORDS
● The SQL parser heavily relies on reserved 

keywords
● 401 English words reserved, representing 18% 

of all English word usage
● This causes invalid accesses to tables and 

attributes which are named after the reserved 
keywords

A CRITIQUE OF MODERN SQL



  

IMPLICIT JOINS
● Can accidentally create huge, 

slow queries if a join condition 
is forgotten. 

● SQL allows joins using just a 
comma.

● This can overload systems and 
even give incorrect results.

● Making joins so easy to write 
is a risky design choice.

A CRITIQUE OF MODERN SQL



  

EXPLICIT JOINS
● Syntax is crucial for outer joins 

since their results depend on the 
join order. 

● Two similar-looking queries can 
produce different results based on 
where the ON clause is placed. 

● This makes understanding SQL 
join behavior tricky, as the syntax 
doesn't clearly show the execution 
order.

A CRITIQUE OF MODERN SQL



  

“GROUP” OPERATOR
● Another common 

operation is grouping.
● Grouped attributes 

appear twice.
● 9% of all queries failing 

with a “column must 
appear in the GROUP 
BY clause” error

A CRITIQUE OF MODERN SQL



  

“HAVING” OPERATOR
● A common SQL mistake 

(1.9% of errors) is filtering 
aggregates in the WHERE 
clause instead of using 
HAVING. 

● Subqueries could work, 
SQL provides HAVING 
specifically for avoiding 
subqueries

A CRITIQUE OF MODERN SQL



  

“OVER” OPERATOR

● Another keyword which can be confusing
● OVER operator is executed later based on the semantic order
● This means that the WHERE operator does not have access to the 

OVER operator
● User must use a workaround by using subqueries

A CRITIQUE OF MODERN SQL



  

SYNTACTIC / SEMANTIC ORDERING
● Syntactic order doesn't 

match its actual execution 
order, making queries 
harder to understand.

● The SELECT clause is a 
clear example, as its 
parts execute at different 
stages. 

A CRITIQUE OF MODERN SQL



  

LACK OF PORTABILITY
● SQL is an official ISO standard.
● However…

– Very hard to write portable SQL queries.
– Systems implement non-portable expression 

libraries and language extensions, which further 
fragments the language.

– Systems choose to deviate from the standard.

A CRITIQUE OF MODERN SQL



  

LESSONS
● Irregular Syntax Causes Big Problems:

– English-inspired syntax leads to a complex and arbitrary grammar, 
making the language difficult to learn.

– Languages have to be designed with extensibility and abstraction 
mechanisms in mind.

● Semantic Operator Ordering Should Be Explicit:
– To compose accurate SQL queries, it is necessary to comprehend the 

implicit ordering semantics of each construct.
–  It would be better for query languages to make the semantical and 

syntactical order identical

A CRITIQUE OF MODERN SQL



  

SaneQL: TOWARDS SIMPLE AND 
EXPRESSIVE QUERIES

● New query language, called the Simple ANd 
Expressive Query Language (SaneQL).
– Nicer and more systematic way to expressive 

queries.
– Modularity allows reusing logic across queries.

SANEQL



  

FOUNDATION – RELATIONAL ALGEBRA
● SaneQL is based on relational algebra, allowing 

users to construct queries using relational operators.
● Query Optimizer: 

– Just like in SQL, SaneQL’s algebraic expressions are 
optimized into more efficient execution plans.

● New Data Categories:
– Introduces expressions, symbols and lists of these 

elements.

SANEQL



  

QUERY EXPRESSION – PIPELINING
● SaneQL supports Uniform Function Call Syntax 

(UFCS).
– We can use a dot to pass a value as first argument 

of the next call.
– The dot notation is usually preferable as it 

preserves locality in the query text.

SANEQL



  

SYNTAX – CALLS, KEYWORDS, LISTS

● Operations are performed by invoking functions
● Named parameters inside functions help to keep 

invocations readable
● Curly braces are used to denote lists. Used for grouping 

and aggregation

SANEQL



  

LANGUAGE FEATURES
● Scoping

– If a tuple is referenced multiple times, it can be given 
an alias using the as(…) operator

● Inline Tables
– Constant tables that are constructed with a table call

● Let construct
– Intermediate results can be stored inside variables 

SANEQL



  

MODULARITY AND EXTENSIBILITY
● Scalar arguments

– SaneQL provides the 
additional feature of 
parameterizing queries for 
modular query execution

● Expression arguments
– Modularize queries with the 

ability to pass expressions 
as arguments

SANEQL



  

RELATED WORK
● How We Got Here

– Over five decades, incremental additions like subqueries, outer joins, and 
window functions transformed SQL into a powerful but increasingly 
complex language.

● SQL Critiques
– SQL has been receiving critique since it’s release

● New query languages
– There have been many attempts for a better language
– SaneQL distinguishes itself from other attempts due to it’s abstraction 

capabilities

SANEQL



  

FUTURE WORK
SANEQL

● Authors’ future work includes exploring 
SaneQL’s embedding into host languages, 
integrating operator hints for query optimization, 
developing interactive query construction 
interfaces, and introducing a general macro 
system for advanced abstractions.



  

CONCLUSIONS
SANEQL

● Despite being the dominant language, SQL has major 
weaknesses
– Hard to learn and difficult to debug for beginners
– Lack of abstraction features for advanced users

● SaneQL
– Replaces the irregular pseudo-English syntax with a much simpler 

regular syntax
– Explicitly orders the relational operations
– Preserves SQL’s core ideas
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