

Thomas Neumann
Viktor Leis

A Critique of Modern
SQL And A Proposal
Towards A Simple and
Expressive Query
Language

Nikolas Vattis
Antonis Katsiantonis

CONTENT
● Introduction
● A critique of Modern SQL
● SaneQL
● Conclusion

INTRODUCTION
● As of today, SQL is the predominant query language
● However, SQL faces design problems

– Problem 1 – English syntax, easy to read for simple
queries, but hard to read for more complex queries

– Problem 2 – Lacks programming mechanisms such as
Abstraction, Modularity, Extensibility

● The dominance of SQL may be at risk with the rise in
popularity of dataframe APIs (pandas, polars)

CONTRIBUTIONS
● Provide a detailed critique on the modern SQL

language
● Introduce SaneQL (Simple ANd Expressive

Query Language)

Introduction

A CRITIQUE OF MODERN SQL
● Modern SQL is critiqued using query examples
● Authors have collected 130998 queries from

over 1000 students
● 38% resulted in an error on first execution
● Vast majority of failed executions were at

compile-time

UNHELPFUL ERROR MESSAGES
● Most common error

messages are not
very helpful

● Error messages do
not specify the
problem, or how to
fix it

A CRITIQUE OF MODERN SQL

SYNTACTICALLY DIFFICULT CONSTRUCTS
● WITH

– Only 45% of queries
containing WITH are
successful

● VALUES
– Only 40% of queries

containing VALUES are
successful

A CRITIQUE OF MODERN SQL

TOO MANY KEYWORDS
● The SQL parser heavily relies on reserved

keywords
● 401 English words reserved, representing 18%

of all English word usage
● This causes invalid accesses to tables and

attributes which are named after the reserved
keywords

A CRITIQUE OF MODERN SQL

IMPLICIT JOINS
● Can accidentally create huge,

slow queries if a join condition
is forgotten.

● SQL allows joins using just a
comma.

● This can overload systems and
even give incorrect results.

● Making joins so easy to write
is a risky design choice.

A CRITIQUE OF MODERN SQL

EXPLICIT JOINS
● Syntax is crucial for outer joins

since their results depend on the
join order.

● Two similar-looking queries can
produce different results based on
where the ON clause is placed.

● This makes understanding SQL
join behavior tricky, as the syntax
doesn't clearly show the execution
order.

A CRITIQUE OF MODERN SQL

“GROUP” OPERATOR
● Another common

operation is grouping.
● Grouped attributes

appear twice.
● 9% of all queries failing

with a “column must
appear in the GROUP
BY clause” error

A CRITIQUE OF MODERN SQL

“HAVING” OPERATOR
● A common SQL mistake

(1.9% of errors) is filtering
aggregates in the WHERE
clause instead of using
HAVING.

● Subqueries could work,
SQL provides HAVING
specifically for avoiding
subqueries

A CRITIQUE OF MODERN SQL

“OVER” OPERATOR

● Another keyword which can be confusing
● OVER operator is executed later based on the semantic order
● This means that the WHERE operator does not have access to the

OVER operator
● User must use a workaround by using subqueries

A CRITIQUE OF MODERN SQL

SYNTACTIC / SEMANTIC ORDERING
● Syntactic order doesn't

match its actual execution
order, making queries
harder to understand.

● The SELECT clause is a
clear example, as its
parts execute at different
stages.

A CRITIQUE OF MODERN SQL

LACK OF PORTABILITY
● SQL is an official ISO standard.
● However…

– Very hard to write portable SQL queries.
– Systems implement non-portable expression

libraries and language extensions, which further
fragments the language.

– Systems choose to deviate from the standard.

A CRITIQUE OF MODERN SQL

LESSONS
● Irregular Syntax Causes Big Problems:

– English-inspired syntax leads to a complex and arbitrary grammar,
making the language difficult to learn.

– Languages have to be designed with extensibility and abstraction
mechanisms in mind.

● Semantic Operator Ordering Should Be Explicit:
– To compose accurate SQL queries, it is necessary to comprehend the

implicit ordering semantics of each construct.
– It would be better for query languages to make the semantical and

syntactical order identical

A CRITIQUE OF MODERN SQL

SaneQL: TOWARDS SIMPLE AND
EXPRESSIVE QUERIES

● New query language, called the Simple ANd
Expressive Query Language (SaneQL).
– Nicer and more systematic way to expressive

queries.
– Modularity allows reusing logic across queries.

SANEQL

FOUNDATION – RELATIONAL ALGEBRA
● SaneQL is based on relational algebra, allowing

users to construct queries using relational operators.
● Query Optimizer:

– Just like in SQL, SaneQL’s algebraic expressions are
optimized into more efficient execution plans.

● New Data Categories:
– Introduces expressions, symbols and lists of these

elements.

SANEQL

QUERY EXPRESSION – PIPELINING
● SaneQL supports Uniform Function Call Syntax

(UFCS).
– We can use a dot to pass a value as first argument

of the next call.
– The dot notation is usually preferable as it

preserves locality in the query text.

SANEQL

SYNTAX – CALLS, KEYWORDS, LISTS

● Operations are performed by invoking functions
● Named parameters inside functions help to keep

invocations readable
● Curly braces are used to denote lists. Used for grouping

and aggregation

SANEQL

LANGUAGE FEATURES
● Scoping

– If a tuple is referenced multiple times, it can be given
an alias using the as(…) operator

● Inline Tables
– Constant tables that are constructed with a table call

● Let construct
– Intermediate results can be stored inside variables

SANEQL

MODULARITY AND EXTENSIBILITY
● Scalar arguments

– SaneQL provides the
additional feature of
parameterizing queries for
modular query execution

● Expression arguments
– Modularize queries with the

ability to pass expressions
as arguments

SANEQL

RELATED WORK
● How We Got Here

– Over five decades, incremental additions like subqueries, outer joins, and
window functions transformed SQL into a powerful but increasingly
complex language.

● SQL Critiques
– SQL has been receiving critique since it’s release

● New query languages
– There have been many attempts for a better language
– SaneQL distinguishes itself from other attempts due to it’s abstraction

capabilities

SANEQL

FUTURE WORK
SANEQL

● Authors’ future work includes exploring
SaneQL’s embedding into host languages,
integrating operator hints for query optimization,
developing interactive query construction
interfaces, and introducing a general macro
system for advanced abstractions.

CONCLUSIONS
SANEQL

● Despite being the dominant language, SQL has major
weaknesses
– Hard to learn and difficult to debug for beginners
– Lack of abstraction features for advanced users

● SaneQL
– Replaces the irregular pseudo-English syntax with a much simpler

regular syntax
– Explicitly orders the relational operations
– Preserves SQL’s core ideas

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

