
EPL646 - Advanced Topics in Databases 28-11-2017

University of Cyprus - Department of
Computer Science

EPL646: Advanced Topics in Databases
Georgiou Zacharias and Paschalides Demetris

[zgeorg03, dpasch01]@cs.ucy.ac.cy

Reference:
Let's Talk About Storage Recovery Methods for Non-Volatile Memory Database Systems, Joy Arulraj, Andrew Pavlo, and
Subramanya R. Dulloor. 2015.In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
(SIGMOD '15). ACM, New York, NY, USA, 707-722. DOI: https://doi.org/10.1145/2723372.2749441

1

https://doi.org/10.1145/2723372.2749441

EPL646 - Advanced Topics in Databases 28-11-2017

Overview
1. Introduction
2. Background Work

2.1. Motivation

3. DBMS Testbed and NVM-Aware Engines
3.1. In-Place Updates Engine
3.2. Copy-on-Write Updates Engine
3.3. Log-structured Updates Engine

4. Experimental Analysis
4.1. Benchmarks
4.2. Runtime Perf
4.3. Reads & Writes
4.4. Recovery
4.5. Execution Time Breakdown
4.6. Storage Footprint

5. Conclusion 2

EPL646 - Advanced Topics in Databases 28-11-2017

Introduction
■ New OLTP applications support larger number of concurrent users/systems

because of the scale to which ingest information.
■ Performance is affected by how fast the system reads/writes data.
■ DBMSs always dealt with the tradeoffs between volatile and nonvolatile

storage devices because recovery logs need to be written in non-volatile
devices

■ HDDs and SSDs are such devices but are slow and support bulk data
transfers as blocks.

3

EPL646 - Advanced Topics in Databases 28-11-2017

Introduction
■ DRAM would be great for such workloads but it is a volatile memory and also

consumes a lot of energy

“ DRAM - Dynamic Random Access Memory is a type of memory that is typically
used for data or program code that a computer processor needs to function.
DRAM is a common type of random access memory used in personal computers,
workstations and servers. “ - Wikipedia

■ Flash-Based SSDs have better storage capabilities and less energy
consumption but slower than DRAM

■ Flash-Based SSDs also have Block-Based access methods, writing single
byte the DBMS must write the change as a block - 4KB

■ Problematic for OLTPs since they do a lot of small changes
4

EPL646 - Advanced Topics in Databases 28-11-2017

Introduction
■ NVM - Non-Volatile Memory will fundamentally change the dichotomy

between memory and durable/persistent storage in the DBMSs

“ Non-Volatile Memory is a type of computer memory that can retrieve stored
information even after having been turned off and back on - power cycled. The
opposite of non-volatile memory is volatile memory which needs constant power in
order to prevent data from being erased. “ - Wikipedia

■ NVM is a blend of flash-based SSD and DRAM and provides low latency
persistent reads and writes

■ Usage of NVM-only hierarchy in OLTP DBMS will be evaluated in this paper
presentation

5

https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Volatile_memory

EPL646 - Advanced Topics in Databases 28-11-2017

About Data Structures
■ SSTable:

○ Sorted string table, key-value storage sorted by keys
○ On-disk data structure and is always immutable
○ Immutable - appropriate only for storing static data. Bloom filters are used to reduce reads
○ Internally contains a sequence of blocks, each block is 64 KB in size

■ Bloom Filter [1]:
○ Space-efficient probabilistic data structure
○ A query returns either "possibly in set" or "definitely not in set"
○ Sufficient core memory, an error-free hash used to eliminate all unnecessary disk accesses.
○ Fewer than 10 bits per element are required for a 1% false positive probability, independent of

the size or number of elements in the set
■ MemTable:

○ An in-memory SSTable with the contents loaded in RAM

■ LSM Tree:
○ A data structure with performance characteristics that make it attractive for providing indexed

access to files with high insert volume, such as transactional log data
6

EPL646 - Advanced Topics in Databases 28-11-2017

Disk-oriented e.g., IBM’s System R [2]
■ Manage blocks of tuples on disk using

 in-memory cache
Memory-oriented e.g., IBM’s IMS/VS Fast Path [3]

■ Updates on in-memory data and relies
 on the disk to ensure durability

Previous studies have shown that the overhead of managing this data movement for OLTP workloads is considerable

NVM technologies, remove tuple transformation and propagation costs through byte-addressable loads and stores with
low latency

■ Unlike DRAM, all writes to the NVM are potentially durable and therefore a DBMS can access the tuples directly in the
NVM after a restart or crash without the need to reload the database

Previous work showed that the two architectures achieve almost the same performance when using NVM because of the
overhead of logging [4]

 Authors seek to understand the characteristics of different storage and recovery methods

Motivation

EPL646 - Advanced Topics in Databases 28-11-2017

NVM Hardware Emulator
NVM storage devices are prohibitively expensive and only support small capacities

■ Use of a NVM hardware emulator
■ Emulator supports tunable read latencies and read/write bandwidths

Allocator Interface
■ POSIX malloc interface
■ Use of hardware write barrier primitive (SFENCE) to guarantee the durability of writes to NVM
■ NEGATIVE: No naming mechanism that is valid after a system restart

Filesystem Interface
■ POSIX filesystem interface (read/write)
■ Emulator exposes a NVM-backed volume to the OS through an optimized for non-volatile memory

filesystem
■ POSITIVE: Supports a naming mechanism that ensures file offsets are valid after restart
■ NEGATIVE: Requires the application’s writes to go through kernel’s VFS

EPL646 - Advanced Topics in Databases 28-11-2017

NVM-aware Memory Allocator

Should provide durability
■ Necessary because the changes made by a

transaction to a location on NVM may still
reside in volatile CPU caches when the
transaction commits

■ This is achieved using CLFLUSH and
SFENCE instructions

Must provide a naming mechanism
■ Ensure that pointers still point to valid

locations after a system restart
■ Achieved by the use of non-volatile pointers

EPL646 - Advanced Topics in Databases 28-11-2017

DBMS Testbed
■ Developed a lightweight DBMS to evaluate different

storage architecture designs for OLTP workloads

■ The DBMS’s internal coordinator receives incoming
transaction requests from the application and then
invokes the target stored procedure

■ As a transaction executes in the system, it invokes
queries to read and write tuples from the database

■ These requests are passed through a query executor that
invokes the necessary operations on the DBMS’s active
storage engine

■ The DBMS uses pthreads to allow multiple transactions
to run concurrently in separate worker threads

■ 3 Storage Engines for durable updates are implemented

EPL646 - Advanced Topics in Databases 28-11-2017

In-Place Updates Engine - InP
The most common storage engine strategy in DBMSs and
the most efficient method of applying changes

■ The system writes the new value directly on top of the
original one

■ Based on VoltDB [5], a memory oriented DBMS
■ Uses STX B+tree library for its indexes [6]

■ Both fixed-sized and variable-length blocks
■ Unsorted tuples within blocks
■ A list of unoccupied tuple slots for each table is

maintained
■ The engine uses the allocator interface to maintain the

indexes and stores them in memory

Storage

EPL646 - Advanced Topics in Databases 28-11-2017

■ InP maintains a durable Write-Ahead Log - WAL in
the file system

○ WAL records the transactions’ changes before
they are applied

■ ARIES recovery protocol is used
○ The engine periodically takes checkpoints that

are stored on the filesystem to bound recovery
latency and reduce the storage space

○ Authors compress (gzip) the checkpoints to
reduce their storage footprint on NVM

■ Changes made by uncommitted transactions at the
time of failure are not propagated to the database

Recovery

In-Place Updates Engine - InP

EPL646 - Advanced Topics in Databases 28-11-2017

■ The engine stores the WAL as a non-volatile linked list
■ Appends using an atomic write
■ After all of the transaction’s changes are safely persisted, the

engine truncates the log

Storage

The InP engine’s logging infrastructure assumes that the
system’s durable storage device has orders of magnitude
higher write latency compared to DRAM

■ Increases the mean response latency as transactions
need to wait for the group commit operation

■ NVM-InP engine only records a non-volatile pointer to
the tuple in the WAL, rather than copying the tuple to
the WAL

In-Place Updates Engine - NVM - InP

EPL646 - Advanced Topics in Databases 28-11-2017

In-Place Updates Engine - NVM - InP

■ Committed transactions are durable after the system
restarts because the NVM-InP engine immediately
persists the changes made by a transaction when it
commits

■ No need to replay the log during recovery
■ Changes of uncommitted transactions may be present

in the database because the memory controller can
evict cache lines containing those changes to NVM at
any time

○ It needs to undo those transactions using the
WAL

■ As this recovery protocol does not include a redo
process, the NVM-InP engine has a short recovery
latency that only depends on the number of
uncommitted transactions

Recovery

EPL646 - Advanced Topics in Databases 28-11-2017 15

INSERT UPDATE DELETE SELECT

■ Sync tuple with NVM
■ Record tuple pointer

in WAL
■ Sync log entry with

NVM
■ Mark tuple state as

persisted
■ Add tuple entry in

indexes

■ Record tuple changes
in WAL

■ Sync log entry with
NVM

■ Perform modifications
on the tuple

■ Sync tuple changes
with NVM

■ Record tuple pointer in
WAL

■ Sync log entry with NVM
■ Discard entry from table

and indexes
■ Reclaim space at the end of

transaction

■ Find tuple
pointer using
index/table

■ Retrieve tuple
contents

p: size of the pointer

T: size of the tuple
F: size of fixed-length field
V: size of variable-length
field

ε: small fixed-length writes
to NVM

In-Place Updates Engine - NVM - InP

EPL646 - Advanced Topics in Databases 28-11-2017

Copy-on-Write Updates Engine - CoW
Creates a copy of the tuple and then modifies that copy

● As the CoW engine never overwrites committed data, it
doesn’t need to record changes in a WAL for recovery

● Uses different look-up directories for accessing the
versions of tuples in the database, known as shadow
paging in IBM’s System R [7]

○ Current directory points to the most recent versions
of the tuples and committed transactions

○ Dirty directory points to tuples being modified
● The engine maintains a master record that always points

to the current directory
○ Ensure that the transactions are isolated from the

effects of uncommitted transactions

EPL646 - Advanced Topics in Databases 28-11-2017

Copy-on-Write Updates Engine - CoW

■ CoW engine stores the directories on the filesystem
■ Each database is stored in a separate file
■ Downside: CoW engine creates a new copy of tuple

even if a transaction only modifies a subset of the
tuple’s fields

■ Downside: The engine needs to keep track of
references to tuples from different versions of the
copy-on-write B+tree to reclaim the storage space
consumed by old unreferenced tuple versions

○ Increasing wear on the NVM device thereby
reducing its lifetime

Storage

Recovery
■ No recovery process: If DBMS crashes before the master record updated then changes present in

the dirty directory are not visible after restart

EPL646 - Advanced Topics in Databases 28-11-2017

The original CoW engine stores tuples in self-containing blocks
without pointers in the B+tree on the filesystem

■ High overhead of propagating modifications to the dirty
directory

■ Expensive writes (go through the kernel’s VFS path)

Optimizations

■ Use of non-volatile copy-on-write B+tree
■ Directly persists the tuple copies and only records

non-volatile pointers in the directory
■ Use of a lightweight durability mechanism to persist

changes in the B+tree

Copy-on-Write Updates Engine - NVM CoW

EPL646 - Advanced Topics in Databases 28-11-2017

Copy-on-Write Updates Engine - NVM CoW

■ The engine maintains the durability state of each slot
in both pools similar to the NVM-InP engine

■ The NVM-CoW engine stores the current and dirty
directory of the non-volatile copy-on-write B+tree
using the allocator interface

■ It avoids the transformation and copying costs
incurred by the CoW engine

Storage

Recovery

■ No recovery process as it never overwrites committed
data

■ Storage space consumed by the dirty directory at the
time of failure is asynchronously reclaimed by the
NVM-aware allocator

EPL646 - Advanced Topics in Databases 28-11-2017 20

INSERT UPDATE DELETE SELECT

■ Sync tuple with
NVM

■ Store tuple pointer
in WAL

■ Update tuple state
as persisted

■ Add tuple entry in
secondary indexes

■ Make a copy of the tuple
■ Apply changes on the copy
■ Sync tuple with NVM
■ Store tuple pointer in dirty

dir
■ Update tuple state as

persisted
■ Add tuple entry in

secondary indexes

■ Remove tuple
pointer from dirty
dir

■ Discard entry from
secondary indexes

■ Recover tuple
space immediately

■ Locate tuple
pointer in
appropriate dir

■ Fetch tuple
contents from
dir

p: size of the pointer

T: size of the tuple
F: size of fixed-length field
V: size of variable-length
field

ε: small fixed-length writes
to NVM

Copy-on-Write Updates Engine - NVM CoW

EPL646 - Advanced Topics in Databases 28-11-2017

Log-structured Updates Engine
■ Uses log-structured update policies by

utilizing LSM Trees [8]

■ Each LSM Tree consists of a collection of
runs of data [9]

■ Each run contains an ordered set of
entries with changes performed on tuples

■ Runs reside in volatile and durable
memory e.g. MemTable and SStable

■ Design based on Google’s LevelDB [10] -
uses leveled LSM Tree, each level with
changes of a single run

21

EPL646 - Advanced Topics in Databases 28-11-2017

Log-structured Updates Engine
Storage:
■ When size of MemTable exceeds the

threshold, the engine flushes it in SSTable to
filesystem

■ Performs well with write-intensive workloads
by reducing random writes

■ Poor performance in high read amplification -
index look up all runs [11]

■ Solution: periodic compaction process for
merging subsets of SSTables into a new one

Recovery:
■ MemTable is volatile, thus WAL is maintain in

order to recover from logs
■ Replays the log and then remove changes that

are uncommitted
22

EPL646 - Advanced Topics in Databases 28-11-2017

Log-structured Updates Engine - NVM-Log
Storage:
■ Batches all writes in MemTable to reduce

random accesses on durable storage [9, 12]
■ Original Log-Structure Update Engine incurs

large overhead from flushing MemTable and
compacting SSTable

■ Instead of flushing, marks existing as
immutable and creates new MemTable

■ Logging overhead lower - less data and
maintains WAL with allocator interface

Recovery:
■ NVM-aware recovery protocol does not rebuild

MemTable but undo the effects of
uncommitted transactions

23

EPL646 - Advanced Topics in Databases 28-11-2017

Log-structured Updates Engine - NVM-Log

24

INSERT UPDATE DELETE SELECT

■ Sync tuple with
NVM

■ Record tuple
pointer in WAL

■ Sync log entry
with NVM

■ Mark tuple state
as persisted

■ Add tuple entry in
MemTable

■ Record tuple
changes in WAL

■ Sync log entry
with NVM

■ Perform
modifications on
the tuple

■ Sync tuple
changes with
NVM

■ Record tuple
pointer in WAL

■ Sync log entry
with NVM

■ Mark tuple
tombstone in
MemTable

■ Reclaim space
during
compaction

■ Find tuple entries
in relevant LSM
runs

■ Rebuild tuple by
coalescing
entries

T: size of tuple
F: size of fixed-length field
V: size of variable-length field
θ: LSM compaction factor
ε: small fixed length size
p: size of a pointer

EPL646 - Advanced Topics in Databases 28-11-2017

Benchmarks
■ YCSB: Yahoo key-value workloads for web-based companies transactions

○ Transaction types:
■ Read actions to retrieve single tuple based on primary key
■ Update transactions to modify single tuple based on primary key

○ Workload mixtures:
■ Read-Only - 100% Read
■ Heavy-Read - 90% Read and 10% Write
■ Balanced - 50% Read and 50% Write
■ Write-Heavy - 10% Read and 90 % Write

○ Skew Levels:
■ Low Skew - 50% of the transaction access 20% of the tuples
■ High Skew - 90% of the transaction access 10% of the tuples

■ TPC-C: Industry standard for evaluating OLTP systems
○ Five transaction types from wholesale suppliers

25

EPL646 - Advanced Topics in Databases 28-11-2017

NVM-Log

NVM-CoW

NVM-InP

Log

CoW

InP

Runtime Performance
■ NVM’s latency impact analysis on the performance of the storage engines
■ Run the benchmarks under three different latency configurations:

○ Default DRAM latency configuration - 160 ns
○ A low NVM latency configuration - 2x higher than DRAM with 320 ns
○ A high NVM latency configuration - 8x higher than DRAM with 1280 ns

26

YCSB Benchmark Performance Analysis

DRAM
Latency

EPL646 - Advanced Topics in Databases 28-11-2017

NVM-Log

NVM-CoW

NVM-InP

Log

CoW

InP

Runtime Performance

27

YCSB Benchmark Performance Analysis

NVM
Low

Latency

NVM
High

Latency

The performance of the
engines for TPC-C
benchmark for all three
NVM latency settings

EPL646 - Advanced Topics in Databases 28-11-2017

■ Measure the times that the storage engines access the NVM device while
executing the benchmark

■ Important because different NVM technologies have limits on write cycles
per bit

■ Measure using hardware performance counters that track the number of
loads (reads) and stores (writes)

NVM-Log

NVM-CoW

NVM-InP

Log

CoW

InP

Reads and Writes

YCSB Benchmark Performance Analysis

YCSB
NVM

Reads

28

EPL646 - Advanced Topics in Databases 28-11-2017

NVM-Log

NVM-CoW

NVM-InP

Log

CoW

InP

Reads and Writes

29

YCSB Benchmark Performance Analysis

YCSB
NVM

Stores

TPC-C Benchmark Performance Analysis

TPC-C
NVM
Loads

The number of load and store
operations executed by the storage
engines while running the TPC-C
benchmark

EPL646 - Advanced Topics in Databases 28-11-2017

■ For each benchmark authors execute a fixed number of transactions and then force a hard shutdown -
SIGKILL

NVM-Log

NVM-InP

Log

InP

Recovery

30

■ The latency of the InP and Log engines grows
linearly

○ Redo the effects of committed transactions
before undoing the effects of uncommitted
transactions

The NVM-aware engines have a short recovery that is always less than a second

■ NVM-aware engines’ recovery time is
independent of the number of
transactions executed

○ Only undo the effects of the transactions
that are active at the time of failure

EPL646 - Advanced Topics in Databases 28-11-2017

■ Analyze the time that the engines spend in their internal components during execution
■ Only YCSB with low skew and low NVM latency configuration
■ Use event-based sampling with the perf-framework to track the cycles executed within the

engine’s components

Categories

■ Storage Management operations

■ Recovery Mechanisms

■ Index accesses and maintenance

■ Other components

Execution Time Breakdown

31

EPL646 - Advanced Topics in Databases 28-11-2017

■ NVM-aware engines spend 13-18% of their time on recovery tasks compared to traditional engines (33%)
■ Engines performing copy-on-write updates spend a higher proportion of time on recovery-related tasks

○ Cost of creating and maintaining the dirty directory for large databases, even using efficient B+tree
■ Log and NVM-Log spend a higher fraction of their time on index look-ups

○ They perform multiple index look-ups on the LSM tree to reconstruct tuples

32

Execution Time Breakdown

EPL646 - Advanced Topics in Databases 28-11-2017

The amount of space that it uses for storing tables, logs, indexes, and other internal data structures
■ This metric is important because we expect that the first NVM products will initially have a higher cost than current

storage technologies

33

■ CoW engine has high overhead (creating directories
and copying tuples)

■ NVM-aware engines consume 17-21% less storage
space than traditional engines

■ 31-38% smaller storage footprints
■ More significant because TPC-C is

write-intensive with longer running
transactions

Storage Footprint

EPL646 - Advanced Topics in Databases 28-11-2017

Conclusion
■ NVM-aware engines outperform the traditional engines by up to 5.5 times while reducing the

number of writes to the storage more than half on write-intensive workloads
■ NVM access latency has the most impact on the runtime performance, more than the amount

of skew or the modifications number
■ The NVM-aware engines perform fewer store/write operations than the traditional ones, thus

extending NVM device lifetimes.
■ Smaller storage footprint due to allocator interface usage with non-volatile pointers for data

structures
■ NVM-InP engine overall performs better across the workload mixtures, skew settings and

NVM latencies
■ NVM-CoW engine did not perform well for write-intensive workloads - better fit for DBMSs’

that support non-blocking, read-only transactions
■ NVM-Log essentially performs in-place updates like NVM-InP without additional overhead

EPL646 - Advanced Topics in Databases 28-11-2017

B.H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM. 1970.

M. M. Astrahan, M.W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffiths,W. F. King, R. A. Lorie, P.
R. McJones, J.W. Mehl, G. R. Putzolu, I. L. Traiger, B.W. Wade, and V.Watson. System R: relational approach to
database management. ACM Trans. Database Syst., 1(2):97–137, June 1976

D. Gawlick and D. Kinkade. Varieties of concurrency control in IMS/VS Fast Path. Technical report, Tandem, 1985

J. DeBrabant, J. Arulraj, A. Pavlo, M. Stonebraker, S. Zdonik, and S. Dulloor. A prolegomenon on OLTP database
systems for non-volatile memory. In ADMS@VLDB, 2014.

VoltDB. http://voltdb.com.

T. Bingmann. STX B+ tree C++ template classes. http://panthema.net/2007/stx-btree/

J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu, and I. Traiger. The recovery manager of
the system R database manager. ACM Comput. Surv., 13(2):223–242, June 1981

[1]

[2]

[3]

[4]

[5]

[6]

[7]

References

http://voltdb.com
http://panthema.net/2007/stx-btree/

EPL646 - Advanced Topics in Databases 28-11-2017

M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured file system. ACM Trans.
Comput. Syst., 10(1):26–52, Feb. 1992

P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree (lsm-tree). Acta Inf., 33(4):351–385,
June 1996.

J. Dean and S. Ghemawat. LevelDB. http://leveldb.googlecode.com.

Apache Cassandra. http://datastax.com/documentation/cassandra/2.0/.

LevelDB. Implementation details of LevelDB. https: //leveldb.googlecode.com/svn/trunk/doc/impl.html.

[8]

[9]

[10]

[11]

[12]

References

http://leveldb.googlecode.com
http://datastax.com/documentation/cassandra/2.0/
https://leveldb.googlecode.com/svn/trunk/doc/impl.html

