Department of Computer Science
University of Cyprus

EPL646 — Advanced Topics in Databases

Lecture 14

Big Data Management |V:

Big-data Infrastructures (Background, 1O,
From NFS to HFDS)

Chapter 14-15: Abideboul et. Al.
Demetris Zeinalipour

http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

14-1

http://www2.cs.ucy.ac.cy/~dzeina/

Lecture Outline

* Introduction to Cloud Computing

— Typical Datacenters, Cloud Stack and Buzzwords, Public
/ Private Clouds, Utility Computing, Killer Apps,
Economic Model

 Distributed System Basics
— 1/O Performance

— Replication Strategies

— The Hadoop Project (Core, HDFS, Map-Reduce, HBase,
HIVE)

— The Hadoop Distributed File System (HDFS)
— HDFS vs. NFS (Network File System)
— HDFS Example Deployments (Yahoo, Facebook)

14-2

Voo
<l

Cloud Computing r

* Different definitions for “Cloud Computing” exist
— http://tech.slashdot.org/article.pl?sid=08/07/17/2117221

* Common ground of many definitions / ayadd

— processing power, storage and software are commodities that are
readily available from large infrastructure

— service-based view: “everything as a service (*aaS)”, where only
“Software as a Service (SaaS)” has a precise and agreed-upon definition

— utility computing: pay-as-you-go model

-t A R . i ey

-

Google's Datacenterin Oregon Microsoft Azuredrn/ Chicago

14-3

Cloud Computing
(Datacenters)

Example: data centers

. DMSL Datacenter
® ‘@ucv

Typical setting of a Google data center. .

@ =~ 40 servers per rack;
@ =~ 150 racks per data center (cluster);
@ = 6,000 servers per data center;

@ how many clusters? Google’s secret, and constantly evolving . ..

Rough estimate: 150-200 data centers? 1,000,000 servers?

Cloud Computing
(Cloud Stack)

P -

Client Software i

®,
Software User Interface Machine Interface *’-?....J__,_'}
(SaaS)
End User
®
Platform c t Servi QL_]' J
(PaaS) omponents SIVICeS Appli&étion
Developer
9
e Computation Network Storage e
(IaaS) System
Administrator

Server Hardware

Source: Wikipedia (http://www.wikipedia.or
SaaS Examples: Google Apps, Quickbooks Online and Salesforce.com. P (http:// 2 a)

PaaS Examples: Amazon Elastic Beanstalk, Heroku, EngineYard, Google App Engine, and Microsoft Azure.
laaS Examples: Amazon CloudFormation (and underlying services such as Amazon EC2), Rackspace Cloud, Google Compute
Engine, and RightScale.

14-5

Cloud Computing
(Public vs. Private)

* Term cloud computing usually refers to both
— SaaS$: applications delivered over the Internet as services
— The Cloud: data center hardware and systems software

e Public clouds

— available in a pay-as-you-go manner to the public
— service being sold is utility computing

— Amazon Web Service, Microsoft Azure, Google AppEngine

* Private clouds

— internal data centers of businesses or organizations

— normally not included under cloud computing

Based on: “Above the Clouds: A Berkeley View of Cloud Computing”, RAD

Lab, UC Berkeley 14-7

Cloud Computing
(Utility Computing — YTT. QeAciac)

NewSQL-as-a-Service
To Amazon RDS* (Relational Database Service)

Fay by the hour your DB Instance runs,

US — N. Virginia US — N. California EU - Ireland APAC — Singapore
DB Instance Class Price Per Hour
small DB Instance 963$ / year $0.11
Large DB Instance F0, <44
Extra Large DB Instance $0.88
Double Extra Large DB Instance %1.55
Qs inla Erea s e 1o et 27,165 $ / year

(*essentially MySQL running on Amazon EC2 —
Amazon ROs currently supports five DB Instance Classes: E|aStIC Computlng ClOUd

Small OB Instance: 1.7 GB memory, 1 ECU (1 virtual core withh 1 ECLD, &<4-bit platform, Moder I/ Capaat\;
Large DB Instance: 7.5 GB memory, <4 ECUs (2 virtual cores with 2 EClUs each), &4-bit platform, High Lo
Capacity

Extra Large DB Instance: 15 GB of memory, 8 ECUs (4 virtual cores with 2 ECUs =ach), &4-bit platform, High
17O Capacity

Couble Extra Large DB Instance: 24 GB of memory, 13 EClUs {4 virtual cores with 2,25 ECls each), &4-bit
platform, High /O Capacity

Quadruple Extra Large DB Instance: 58 GB of memory, 26 ECUs (8 virtual cores with 3.25 ECUs =ach), &4-bit
platform, High /O Capacity

For each DB Instance class, ROS provides you with the ability to select from SGB to 1TE of associated storage capacity.
Cne ECL provides the equivalent CPU capacity of 3 1.0-1.2 GHz 2007 Spteron of 2007 Xeon processor. 14'8

Cloud Computing
(Utility Computing — YT1. Q@eAgiag)

* |llusion of infinite computing resources
— available on demand

— no need for users to plan ahead for provisioning

* No up-front cost or commitment by users
— companies can start small

— increase resources only when there is an increase in need

* Pay for use on short-term basis as needed
— processors by the hour and storage by the day

— release them as needed, reward conservation

14-9

Cloud Computing

(Virtualization - TexvoAoyia €IKOVIKWY CUOTNUATWYV)

* Virtual resources abstract from physical resources

— hardware platform, software, memory, storage, network

fine-granular, lightweight, flexible and dynamic

e Relevance to cloud computing

centralize and ease administrative tasks
improve scalability and work loads
increase stability and fault-tolerance

provide standardized, homogenous computing platform through
hardware virtualization, i.e. virtual machines

14-10

Po..
Sadl

Our laaS Private Cloud D (

vmware vCenter Management

< e g/ DMSL

LB | & 8 €& | Summary | Monitor Resource Management ‘@
- | WCEMTER - UI:T

DMSL1

v . * Status O | = YMHardware
- @ eswSin.cs Ucy.ac.cy
b & ADMIN Owerall @ MNormal » CPU 2 CPUE), 0 MHzZ uzed
» @BsC “ 1y Memory |:| 2048 MB, 0 MB used
* Guest 05 Details [m|
» @ lmages » Hard disk1 16.00 GB
» & RESEARCH Power State Powered Off
_ v Metwork adapter 1 DMSLGuesthet disconnected
> @ F-Cluster Guest 05 Centos 41576 (G4-hit) i
G veenter (@) COMDYD drive 1 Disconnected

IF Addresses
Fla drive 1 Discannected
v [l DM5L2 DNS Name PR

- @ esxl.incs.ucy.ac.cy Viiware Tools & ot ruRning (Current » Other Additional Hardware
G CloudStarage HYA Version a
(& EFLE46-11 consol
Edit Settings ...
(1 EPLE4R-12 |
(GhEPLA46-13 ~ Related tems o
(1 EPLE4F-14 -
1 EPLE4E-15 Storage pexAstore
Launch console
(31 EFLE46-16 | Metwarks D ELGUesthet
1 EFLE4E-1T - Host i
: esxflin.cs.ucy.ac.cy
) EPLEA6-13 * Annotations [m| . -
esource Poo i
) EPLGA6-19 rlotes esxhin.cs Ucy.ac.cy
- @ sz incs.Ucy.ac.cy
1 EPLE4R-1
1 EPLE4R-10
1 EPLA4E-2 e I I l O

(G EPLG46-4

14-11

Cloud Computing
(Economic Model)

Resource Cost in Medium Cost in Very Large Ratio
Data Center Data Center

Network $95/Mbps/month $13/Mbps/month 7.1x

Storage $2.20/GB/month $S0.40/GB/month 5.7X

Administration =140 servers/admin >1000 servers/admin 7.1x

Source: James Hamilton (http.//perspectives.mvdirona.com)

* Cloud computing is 5-7x cheaper than traditional in-house
computing
* Added benefits

— utilize off-peak capacity (Amazon)
— sell .NET tools (Microsoft)

— reuse existing infrastructure (Google)

14-12

Cloud Computing
(Killer Apps: OLTP/OLAP)

* Data management applications are potential candidates for
deployment in the cloud

— industry: enterprise database system have significant up-front cost that
includes both hardware and software costs

— academia: manage, process and share mass-produced data in the cloud

 Many “Cloud Killer Apps” are in fact data-intensive

— Batch Processing as with map/reduce

— Online Transaction Processing (OLTP) as in automated business
applications

— Offline Analytical Processing (OLAP) as in data mining or machine
learning

14-13

Cloud Computing
(Killer Apps: eScience)

* Old model
— “Query the world”

— data acquisition coupled to a specific hypothesis
* New model

— “Download the world”

— data acquired en masse, in support of many hypotheses

* E-science examples
— astronomy: high-resolution, high-frequency sky surveys, ...
— oceanography: high-resolution models, cheap sensors, satellites, ...

— biology: lab automation, high-throughput sequencing, ...

14-14

Distributed Systems Basics
(I/0 Performance)

==

Each Disk: 2TB 7,200 rpm 6Gb SAS
.. - (Serial Attach. SCSI) 3.5" HDD

N e L R In RAID-5 configuration

| O e [10Gbps FCoE also available]

W, W. . W W W W WS- W Y oW W ™

Virtual Machines

Datacenter

Distributed Systems Basics
(I/0 Performance)

Performance
Type Latency Bandwidth (throughput)
Disk ~ 5 X 10~ 3s (5 millisec.); At best 100 MB/s
LAN ~1—2x 107 3s (1-2 millisec.); ~ 1GB/s (single rack);
~~ 100MB/s (switched);
Internet | Highly variable. Typ. 10-100 ms.; Highly variable. Typ. a few MB/s.;

Bottom line (1): it is approx. one order of magnitude faster to exchange main memory
data between 2 machines in a data center, that to read on the disk.
Bottom line (2): exchanging through the Internet is slow and unreliable with respect to
LANS.

14-16

Distributed Systems Basics
(I/0 Performance)

Distribution, why?

Sequential access. It takes 166
minutes (more than 2 hours and —
a half) to read a 1 TB disk. F oo M

Menory

100 MR
100 MB/s

100 MB/s

Parallel access. With 100 disks, ——
assuming that the disks work in

k. Parallel | ale CPLIL many disks
parallel and sequentially: about o —_—
1mn 30s. [rmemory o memory i sl memory |

100 MEBs

Distributed access. With 100 - 100 MEBs
computers, each disposing of its |
own local disk: each CPU pro- ¢ Distributed reads: an extendible set of servers
cesses its own dataset.(Similar tolParallel but more scalable)

Scalability

The latter solution is scalable, by adding new computing resources.
14-17

Distributed Systems Basics
(I/0 Performance)

What you should remember: performance of data-centric
distr. systems

@ disk transfer rate is a bottleneck for large scale data management;
parallelization and distribution of the data on many machines is a means
to eliminate this bottleneck;

Q write once, read many: a distributed storage system is appropriate for
large files that are written once and then repeatedly scanned;

© data locality: bandwidth is a scarce resource, and program should be
“pushed” near the data they must access to.

14-18

Distributed Systems Basics
(Replication Strategies)

ome illustrative scenarios

read(d)

Replica

replication
Primary copy

a) Eager replication with primary copy

put(d)

(Client B)

put{d)

Synchronous

replication
Replica 1

Replica 2

c) Eager replication, distributed

SQL RDBMSs

NOSQL DBMSs

put(d)

replication

Primary copy

Replica

b) Lazy replication with primary copy
(a.k.a Master-Slave replication)

put(d) put(d)
Asynchronous
.................
replication
Replica 1 Replica 2

d) Lazy replication, distributed
(a.k.a. Master-Master replication)

14-19

Distributed Systems Basics
(Replication Strategies)

Consistency management in distr. systems

Consistency: essentially, ensures that the system faithfully reflects the actions
of a user.

@ Strong consistency (ACID properties) — requires a (slow) synchronous
replication, and possibly heavy locking mechanisms.

@ Weak consistency — accept to serve some requests with outdated data.

@ Eventual consistency — same as before, but the system is guaranteed to
converge towards a consistent state based on the last version.

In a system that is not eventually consistent, conflicts occur and the application

must take care of data reconciliation: given the two conflicting copies,
determine the new current one. (Recall conflict resolution in CouchDB)

Standard RDBMS favor consistency over availability — one of the reasons (?)

of the 'NoSQL trend.
14-20

Terminology
(MR => HADOOP => HBASE)

« Map-Reduce: a programming model for processing
large data sets. Google

Invented by Google! "MapReduce: Simplified Data Processing
on Large Clusters, Jeffrey Dean and Sanjay Ghemawat,
OSDI'04: Sixth Symposium on Operating System Design and
Implementation,San Francisco, CA, December, 2004."

Can be implemented in any language (recall javascript Map-
Reduce we used in the context of CouchDB).

« Hadoop: Apache's open-source software framework
that supports data-intensive distributed applications

Derived from Google's MapReduce + Google File System
(GFS) papers.

Enables applications to work with thousands of computatlon-
Independent computers and petabytes of data. ¢}~

Download: http://hadoop.apache.org/

http://hadoop.apache.org/

Terminology
(MR => HADOOP => HBASE)

« Hadoop Project Modules: \
+ Hadoop Common: The common utilities that support the other Hadoop modules.

« Hadoop Distributed File System (HDFS™): A distributed file system that provides high-
throughput access to application data.

« Hadoop YARN (Yet Another Resource Negotiator): A framework for job scheduling and
cluster resource management.

« Hadoop MapReduce (MapReduce v2.0): A YARN-based system for parallel processing of
large data sets. (Next Lectures)
« Other Hadoop-related projects at Apache include:
* Ambari: Dashboard management system for Hadoop.
« Avro™: A data serialization system.
* Cassandra™: A scalable multi-master database with no single points of failure.
» Chukwa™: A data collection system for managing large distributed systems.

« HBase™ (Hadoop Database): A scalable, distributed database that supports
structured data storage for large tables. (Next Lectures)

* Hive™: A data warehouse infrastructure that provides data summarization and ad hoc
querying.
* Mahout™: A Scalable machine learning and data mining library.

« Pig™: A high-level data-flow language and execution framework for parallel
computation. (Next Lectures)

- ZooKeeper™: A high-performance coordination service for distributed applications. 14-23

Large-Scale File Systems
(GFS => HDFS)

History and development of GFS

Problem: if nodes can fail, how can we store data persistently?
Answer: Distributed File System (global file namespace)

Google File System, a paper published in 2003 by Google Labs at OSDI.

The Google File System, Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, 19th ACM
Symposium on Operating Systems Principles, Lake George, NY, October, 2003.

Explains the design and architecture of a distributed system apt at serving very

large data files; internally used by Google for storing documents collected from
the Web.

Open Source versions have been developed at once: Hadoop File System
(HDFS), and Kosmos File System (KFS).

14-24

Network File Systems
(NFS=>GFS=>HDFS)

UNIX NFS (Network File System):
nfsd (deamon) mounts remote folders to a UNIX host (/etc/fstab).

lidzeinaGevterpi> df

Filesystem 1K—-blocks Used Available Use%s Mounted on
Jdev/mapper/VGSystem—LVroot

Za3la4aea 958588 975996 50% S
Sdev/mapper/VGSystem—LVtmp

lals7@a4 34184 Qz29172 4% Stmp

JSdev/mapper/VGsystem—LVvar

3381112 282692 1128044 64% Svar
Jdev/mapper/VGsystem—LVopt

507748 112975 3685359 24% Sopt
Sdev/mapper/VGsystem—-LVusr

4570784 27TT3IT2 1557492 6B5% Susr
Jdev/mapper/VGEsystem—LVusrLocal

5@7748 65526 416088 14% Susr/local
fdev/sdal l@le86 4747 5512@ 43% /boot
tmpTs Z@z2338@ @ Z@z23380 @% JSdewv/shm
fdeufmapperfUGnaEa—tﬂﬂﬁtﬁ ________________ -———_
- 5812©148 43379612 11744012 79% HSFS:HEEﬂs__
,Lsféd Cs.ucy.ac.cy:/vol/shome/sresearch S~

~

576716800 508312448 68404352 89% Shome/sresearch >
\
csfsl.cs.ucy.ac.cy:/homes/Taculty]

o 629145600 524337472 104808128 84% /home/Taculty ,
S~gsTsS.Ccs.ucy.ac.cy:/homesprojects -’
‘-..~ 516@6528 20891776@ 28067328 43% fhnmefnrg}eﬁtﬂ

14-25

Network File Systems
(NFS=>GFS=>HDFS)

Simplified NFS Protocol Sequence

NFS uses a
Client/Server
Architecture that
IS a single point of

failure by

default.

User B

User Program

FOF
uffer

read

Open File Table
I
(Inode Structure)

Kernel

Buffer
Cache

Disk Blocks
4KB-8KB

RPC MOUNT reply
1

Interface

|

|

1

| |

|

| |

FJ |
RPC GETATTR Request

RPC GETATTR Reply
I |

(5

RRC LOOKUP Request
I T
RPC LOOKUP Reply

Ext3, FAT, NTFS, .

RPE
Client Stub

| L -,

RPC READ Reques
|RPC READ Reply
L

RPC
Servefr Stub |

|
|
|
analFiIeSysterq ‘ ‘
|
|
|
|
4
|
|
|
|
|
|

Q) €=

PHYSICAL
DISK

8

| ! ' I
| |
CLIFNT Port Mapper Motntd : SERVER
I |
s | N NG N
Copnrororivi | [(CNRSD |
USER |5ysmm Call ' Register ! SystemCall USER
KERMEL Mount Port Nurmben KERMEL
Bufer : Reglster
Cache et i
I NFS Pagt Number|
| |
| |
Virtual File System ™ "!q“fjk I Virtual File System
| |
(VFS) Layer dort repiy | | (VFS) Layer
| |
IPC MOUNT request N
: | CLIENT A ENTICATION

| ==

Local File System
Interface

(5

Ext3, FAT, NTFS, .

(:04-

PHYSICN_

CISK
\r,ll

Network

llustrated by Sezgin Bayrak

14-26

- — <« direcoryblocksanddatablocks —
owners (2 || TT=~__ _ | - i
_{imestamp-s = | - d;t; ~~~~~~~~ S .
size block T e
2—B count] —[_data |
block Z —[Gata]
<24KB direct blocks -
= '—‘>
<1 MB single indirect e E— @ =1 data
<51 2M B double indirect =S—[gata | -l | = =] data]
< max supported fife==" | —E— ===
.—] data

size

INode Aopec oto UNIX
(ETTavaAnyn)

T yiveral eav éva apxeio £€xel TToAAG blocks;
YTTApXEl APKETOG XWPOGS YIA va atTroOnkeuTouv OAa Ta i-nodes Twv
blocks 1Tou cuoyxetiCovTal JE TO APXEIO;

To YmroouoTnua ApXeiwv XpNOIUOTTOIET EVa IEPAPXIKO OXAMA TO
oTroio atroTeAcital atrd dEvopa deIKTwY BaBoug O (direct, autod 10

oTroio €idaue nodn), 1 (single), 2 (double), kai 3 (triple)

1-27

Large-Scale File Systems
(Hadoop File System - HDFS)

The problem
Why do we need a distributed file system in the first place?

Fact: standard NFS (left part) does not meet scalability requirements (what if
file1 gets really big?).
Chuck (Block) Size: 4KB-32KB

NFS File Size Limit = 2GB server Default Chunk Size: 64 MB

RN dra dirB . Unlimited File Size
ark g r]/2 }C (21PB by Facebook)
[file2 . ”\

remote ., Server 2 distributi filel
link s niﬂjﬂﬂf"’""—' Rt virtual layer
RN hysical layer
il . i - 3 li
4 l chunk 1] [chunk 3 I chunk 2 xreplicas per
filel chunk 2 chunk 1 p p
chunk
A traditional network file system A large scale distributed file system

Right part: GFS/HDFS storage, based on (i) a virtual file namespace, and (ii)

partitioning of files in “chunks”.
14-28

Large-Scale File Systems
(Hadoop File System - HDFS)

YaHoO!

2010

Target Deployed
Capacity 10PB 14PB
Nodes 10,000 4000
Clients 100,000 15,000
Files 100,000,000 | 60,000,000

« 21 PB of storage in a single HDFS cluster

« 2000 machines

2010

« 12 TB per machine (a few machines have 24 TB each)
« 1200 machines with 8 cores each + 800 machines with 16 cores each
+ 32 GB of RAM per machine

« 15 map-reduce tasks per machine

TABLE 1: TARGETS FOR HDF5 V5. ACTUALLY DEPLOYED VALUES

A5 OF 2009

HDFS scalability: the limits to growth
http://static.usenix.org/publications/login/2010-04/openpdfs/shvachko.pdf

14-29

Large-Scale File Systems
(Hadoop File System - HDFS)

Architecture

A Master node performs administrative tasks, while servers store “chunks” and

send them to Client nodes.

— GFS structure Master node
,,,,,,,,,, - messages /- J"dITBfﬁlcl \\
Client 4_chunk a
cache /. read(/dirB/filel) i
| “} .. chunk b
% : :
File namespace i Chunk locations }
", .. send(filel) 3) o / (
(4) ™., e |
e LT o, . ¥

;... Server CS -) Gcrvcr)
read(/dirB/filel) erver

The Client maintains a cache with chunks locations, and directly
communicates with servers.

Namespace
lookup are fast
(1 Master enough!)
[LGB Metadata =
1PB Data]

In NFS Metadata
+ Transfers going
through same
server => Not
Scalable

HDFS designed for
unreliable
hardware (2-3
failures / 1000
nodes / day)

New Hardware: 3x more unreliable!!!

14-30

Large-Scale File Systems
(Hadoop File System - HDFS)

Technical details ‘
\

@ The architecture works best for very large files (e.g., several Gigabytes),
divided in large (64-128 MBs) chunks.
= this limits the metadata information served by the Master.

@ Each server implements recovery and replication techniques (default: 3
replicas).

@ (Availability) The Master sends heartbeat messages to servers, and
initiates a replacement when a failure occurs.

@ (Scalability) The Master is a potential single point of failure; its protection
relies on distributed recovery techniques for all changes that affect the file

namespace.
I-31

User Interface

API
— Java APl
— C language wrapper (libhdfs) for the Java APl is also avaiable

POSIX like command

— hadoop dfs -mkdir /foodir

— hadoop dfs -cat /foodir/myfile.txt
— hadoop dfs -rm /foodir myfile.txt

HDFS Admin

— bin/hadoop dfsadmin —safemode

— bin/hadoop dfsadmin —report

— bin/hadoop dfsadmin -refreshNodes

Web Interface
— Ex: http://localhost:50070

14-32

Web Interface
(http://172.16.203.136:50070)

NameNode '172.16.203.136:8020'

Started: Sun May 17 11:52:41 CST 2009
Version: 0.20.0, r763504

Compiled: Thu Apr 9 05:18:40 UTC 2009 by ndaley
Upgrades: There are no upgrades in progress.

Browse the filesystem
Namenode Logs

Cluster Summary

55 files and directories, 52 blocks = 107 total. Heap Size is 4.94 MB /198.5 MB (2%)

Configured Capacity 13.32GB

DFS Used . 88147 KB

Non DFS Used : 6.88 GB Live Datanodes : 2

DFS Remaining : 6.44 GB conficured Non

DFS Used® . 0.01 % Node Last Admin g:’;ggg Used DFS Remaining | Used Used
Contact State (GB) | Used (GB) (%) (%)

DFS Remaining% : 48.35% (GB) (@B)

Live Nodes . 2 172.16.203.132 2 | InService 6.66 0 3.06 36| 0.01

Dead Nodes . 0 172.16.203.133 2 | InService 6.66 0 3.82 284 | 0.01

NameNode Storage:

Storage Directory | Type State

fimp/namenode IMAGE_AND_EDITS | Active

Web Interface
(http://localhost:50070) [
Browse the file system

Contents of directory /test

Goto : | ftest

Go to parent directory
[Name | Type| Size| Replication |Block Size Modification Time| Permission [Owner [Group |

|L11'.1t Hdir ” ” H HZ[NH-I]S-]G 15:15 ”rwxr-xr-x Hroot ||snpergmup|
|ouput Hdir ” ” H HZﬂﬂQ-ﬂS-lﬁ 15:17 ‘rwxr-xr-x Hroot ||snpergroup|
|0|lmllt ”d.il' H ” H Ambari indoox [
joutputz dir || | | . =
joutputs dir | | |
|0|.lmllt6”dil' ” ” H ® H Ciluster Status and Metrics
: HDFS Disk Usage DataNodes Live HOFS Links
o Tez ~ NameNode
e on 1/1
® H -
© Webkicat
® fakonB
CPU Usage Cluster Load NameNode Heap
ot [100% -~
® 2
af NameNode Uptime HBase Master Heap HBase Links

No Active Master

14-34

http://172.16.203.136:50070

POSIX Like command

Usagé: hadoop fs [generic options]

[rootfl72 bin]# ./hadoop dfs -mkdir /test/inputl0

[root@l72 bin]# ./hadoop dfs -put ../conf/* /test/inputlQ
[rootél72 bin]# ./hadoop dfs =ls /test/inputl0/
Found 13 items

=IW=L==F==
=IW=L==F==
=IW=L==F==
=T W=L ==L ==
=T W=L ==L ==
=T W=L ==L ==
=T W=L ==L ==
o o S, S
o o S, S
=IW=E==F==
=IW=E==F==
o " o o
=IW=L==F==

W o o w W W W W o W W W

3
[rootél72 bin]# ./hadoop dfs =tail /test/inputl(/masters
localhost
[root@l72 bin]#

root
root
root
root
root
root
root
root
root
root
root
root
root

Bupergroup
supergroup
supergroup
Bupergroup
Bupergroup
Bupergroup
Bupergroup
Bupergroup
Bupergroup
Bupergroup
Bupergroup
Bupergroup
Bupergroup

6275
535
270
22986
1245
4190
259
2815
272
10
30
1243

1195

2009-05-17
2009-05-17
2009-05-17
2009=05=17
2009=05=17
2009=05=17
2009=05=17
2009-05-17
2009-05-17
2009-05-17
2009-05-17
2009-05-17
2009-05-17

12:21
12:21
12:21
12:21
12:21
12:21
12:21
12:21
12:21
12:21
12:21
12:21
12:21

[-appendToFile <localsrc> ... <dst>]

[-cat [-ignoreCrc] <src> ...]

[-checksum <src> ...]

[-chgrp [-R] GROUP PATH...]

[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
[-chown [-R] [OWNER][: [GROUP]] PATH...]
[-copyFromLocal [-f] [-p] [-1] <localsrc=> ...
[-copyToLocal [-p] [-ignoreCrc] [-crc] <srec> ...
[-count [-q] [-h] <path> ...]

[-cp [-f] [-p | -pltopax]] <src> ... =<dst=>]
[-createSnapshot <snapshotDir> [<snapshotName>]]
[-deleteSnapshot <snapshotDir> <snapshotName>]
[-df [-h] [<path> ...]1]

[-du [-s] [-h] <path> ...]

[-expunge]

[-find <path> ... <expression> ...]
[-get [-p] [-ignoreCrc] [-crc] <src> ...
[-getfacl [-R] <path=]

[-getfattr [-R] {-n name | -d} [-e en] <path>]
[-getmerge [-nl] <src> <localdst>]

[-help [emd ...]]

[-1s [-d] [-h] [-R] [<path> ...]]

[-mkdir [-p] <path> ...]
[-moveFromLocal <localsrc> ...
[-moveTolLocal <src= <localdst>]
[-mv <src> ... <dst>]

[-put [-f] [-p] [-1] <localsrc> ...

<dst=]
<localdst>]

<localdst=]

<dst>]

<dst>]

ftest/inputl0/capacity-scheduler.xml
ftest/inputl0/configuration.xsl
/test/inputll/core-site.xml
/test/inputl0/hadoop-env.sh
/test/input10/hadoop-metrics.properties
ftest/inputl0/hadoop-policy.xml
/test/inputl0/hdfs-site.xml
ftest/inputl0/log4j.properties
ftest/inputl0/mapred-site.xml
/test/inputl0/masters
/test/inputlo/slaves
/test/inputl0/ssl-client.xml.example
ftest/inputll/ssl-server.xml.example

14-35

Java AP| &

« Latest API
— http://hadoop.apache.org/core/docs/current/api/

URI uri = new URI("hdfs://namenode/");
FileSystem fs = FileSystem.get(uri, new Configuration());

Path file = new Path("answer"):;

DataOutputStream out = fs.create(file);
out.writeInt (42);

out.close() ;

DataInputStream in = fs.open(file);
System.out.println(in.readInt()):

in.close();

fs.delete (file);

14-36

