Department of Computer Science
University of Cyprus

EPL646 — Advanced Topics in Databases

Lecture 10

Crash Recovery: Undo, Redo, Undo/Redo
Logging and Recovery

Chapter 17: Database Systems: The Complete Book
Garcia-Molina, Ullman, Widom, 2ED

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

10-1

http://www2.cs.ucy.ac.cy/~dzeina/

Recovery: Outline

* Recovery: Definitions, Purpose, Failure
Reasons, ACID Properties and
Responsibilities
 Three Types of Recovery

— Undo (uncommitted) Logging

— Redo (committed) Logging

— Undo/Redo Logging (not discussed)

* Checkpointing and Nonguiescent
Checkpointing

10-2

Database Recovery

Avakapwn oe Baoeic Aedopevwv

* Purpose of Database Recovery (ZKotrog Avakauyng)

— To bring the database into the last consistent state,
which existed prior to the failure.

— To preserve transaction properties (Atomicity,
Consistency, Isolation and Durability), especially the
bold properties.

« Example:

— A system crashes before a fund transfer
transaction commits its execution,

— Either one or both accounts may have an incorrect
value.

— Thus, the database must be restored to the state
before the transaction modified any of the accounts.

10-3

Faillure Reasons of Transactions
(Aoyol 2@paAparoc AocoAnyiwv)

Type of Crash Prevention

Constraints and

Wrong data entry Data cleaning

Redundancy:

Disk crashes e.g. RAID, archive

Fire, theft, Buy insurance,
bankruptcy... Change jobs...
Our focus:

System failures:

e.g. power, OS, RAM DATABASE

RECOVERY 10-4

Review: The ACID properties
(ETravaAnwn: O1 1016TnTeC ACID)

Atomicity (Atopikornta): All actions in the Xact happen, or
none happen (Responsibility: Recovery Manager).

(Semantic) Consistency (Zuverreia): If each Xact is
consistent, and the DB starts consistent, it ends up
consistent (Responsibility: User ... using constraints).

Isolation (ATTopovwon): Execution of one Xact is isolated
from that of other Xacts (Responsibility: Concurrency
Control Manager).

Durability (MovipoTnTa): If a Xact commits, its effects
persist (Responsibility: Recovery Manager).

The Recovery Manager guarantees Atomicity & Durability
10-5

System Model & Definitions
(MovTeAo 2uoTtnuaTtog & Opiouoi) :

« Assumption: the database is composed of reads/writes
over some elements
— Usually 1 element = 1 block
— Canbe smaller (=1 record) or larger (=1 relation)

« Symbols Utilized

— X database object
— tlocal (program) variable

READ(X,t INPUT(X)

WRITE(X,t OUTPUT(X)

program (memory) memory buffer Database disk
(aka Buffer Manager) 10-6

Example Used Iin these Slides

READ(A,1); t := t*2:WRITE(A,t); READ(B,1); t := t*2:WRITE(B, 1)

Action t MemA | MemB Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A\1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,1) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

10-7

System Failures and Logs

« Each transaction (program) has an internal state

 When system crashes, internal state Is lost
— Don’t know which parts executed and which didn't

 Remedy: use a log

— A sequential file that keeps track of all transaction
operations that affect the values of database items.

— Log is maintained both on disk and buffer (will see
next) where, how, when.

HH

Transaction Log

(KataoTixo AocoAnyiwv)

 An append-only file containing log records

« Note: multiple transactions run concurrently, log
records are interleaved

« After system crash, use log to do either or both:

— Undo updates of uncommitted xacts (from end)
— Redo updates of committed xacts (that have not

been OUTPUTTED to disk) (from start)

e Three kinds.af lnns* un

o rnnln

Ta¥a PaV

U, TCUOU,
Ldg Page

1
UulriruyvJj

LogRec

LogRec

LogRec

LogRec

redo

10-9

Recovery A: Undo Logging

Log records

« <START T>
— transaction T has begun

e <COMMIT T>
— T has committed

« <ABORT T> (aka. Rollback)
— T has aborted

e <T,X,v>
— T has updated element X, and its old value was v

10-10

Undo-Logging Example
(Log-then-output, Commit later)

=

Action t Mem A Mem B Disk A Disk B Log
<START T>
READ(A1) 8 8 8 8
t.=t*2 16 8 8 8 ord \;aiue
WRITE(AY) 16 16 8 8 <T,A,8/>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
FLUSH LOG (now all log records appear on disk)
“OUTPUT(A) 16 16 16 16 8 o
“oUTPUT(B) 16 16 16 16 16 UNDO OUTPUT(/
<COMMIT T>
FLUSH LOG (now COMMIT T appears on disk as web)]

Undo-Logging Rules

The following two rules must be obeyed:

Ul (Log then Output) : If T modifies X, then <T,X,v>
must be written to disk BEFORE X is output to disk

m.x., Write to Log: <T,A,8> then Flush Log then
Write to Disk: OUTPUT A

U2 (Commit Later): If T commits, then <COMMIT T>
must be written to disk only after all changes by T
are output to disk

17.x., Write to Disk: OUTPUT A then

Write to Log: COMMIT A then Flush Log

— Hence: OUTPUTs are done early, before the transaction
commits 10-12

Recovery with Undo Log
(Abort Uncommitted)

General Idea: Undo Uncommitted
Transactions (see next slide for details)

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1l>
<T5,X5,v6>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Questionl:
Which updates are undone ?

Question 2:

How far back do we need to
read in the log ?

10-13

Recovery with Undo Log

After system’s crash, run Recovery Manager

« Step 1. Process the Log from END and decide
for each transaction T whether it is completed
or not (how? See next slide)

— <START T>....<COMMIT T>.... =COMPLETE
— <START T>....<ABORT T>....... = COMPLETE
— <START T>....coii = INCOMPLETE

Step 2. Undo all modifications by incomplete
transactions (see next slide)

10-14

Recovery with Undo Log

How does the Recovery Manager classify Xacts?

 Read log from the end; cases:
— <COMMIT T>: mark T as completed
— <ABORT T>: mark T as completed

— <T,X,v>:If (T is completed) then
Ignore
else // incomplete

Write X=oldest(v) to disk (i.e. reset X to its
Initial value, higher in the log)

— <START T>: ignore

10-15

Crashing During Recovery with
Undo Log

« System Crash during Recovery with Undo Log.
What happens?

— We can repeat all actions from scratch for a second
time, no harm is done.
« Why?

— All undo commands are idempotent (rauroduvaueq)
 T1(A); crash; T1(A); T2(A)
Generates the same result with:
« T1(A); T2(A)
because «<Ti,A,v>holds the previous value v of object A

(wouldn’t apply if v was holding the difference from previous
value)

10-16

Recovery with Undo Log

When do we stop reading the log ?

« We cannot stop until we reach the beginning of
the log file

Why?

 Think about <START T1> on first line without
<COMMIT|ABORT T1>

So Recovery is not very practical!
» Better idea: use checkpointing

10-17

Checkpointing
(2nueio ‘EAeyxou)

ldea: Checkpoint the database periodically.

How?

« Stop accepting new transactions

« Wait until all current transactions complete
« Write a <CKPT> log record

 Resume transactions

10-18

Undo Recovery with Checkpointing

During recovery,
Can stop at first
<CKPT>

-

<T9,X9,v9>

(all completed)
<CKPT>
<START T2>
<STARTT3
<START T5>
<START T4>
<T1,X1,v1l>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

>other transactions

Mransactions T2,T3,T4,T5

J 10-19

Nonguiescent Checkpointing
(Mn-adpavec Checkpointing)

* Problem with checkpointing: What happens
with long running xacts ? => database freezes
during checkpoint

* Would like to checkpoint while database is
operational

* |dea: Nonquiescent Checkpointing (un-
adPAVEC oNUEIO EAEYXOU):
— Writea <START CKPT(T1,...,Tk)>
where T1,...,Tk are all active transactions
— Continue normal operation

— When all of T1,...,Tk have completed, write <END
CKPT>

Undo Recovery with Nongquiescent

During recovery,
Can stop at first
<CKPT>

(provided an
<END CKPT>
IS seen)

New Xacts might have
begun!

/[Start Monitoring active
Xacts T4, T5,T6
<START CKPT T4,T5, T6>

//Wait until all active commit
or abort (do not prohibit other
from starting)

Write when T4, T5,T6
complete
<END CKPT>

Checkpointing

}earlier transactions plus

T4, T5, T6

>T4, T5, T6, plus
later transactions

J

After END CKPT has been written, all records prior START CKPT can be deleted

later transactions

10-21

Recovery B: Redo Logging

Problems of UNDO Logging: It requires to
OUTPUT the data before COMMIT. Thus, In
order to offer Strict Schedules we must write
all in-memory data to disk.

Log records

« <START T> = transaction T has begun
« <COMMIT T> =T has committed

« <ABORT T>=T has aborted

« <T,X,v>=T has updated element X, and its
new valueis v

10-22

Redo-Logging Example

IREAD: INPUT & READ

(Commlt -then-Output)

Action MemA | MemB Disk A Disk B Log
<START T>
IREAD(A1) 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A16>
IREAD(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
<COMMITT>
FLUSH LOG (now all log records appear on disk). The ne>_<t OUTI_DUT commands can
, In practice come much later
OUTPUT(4) | 16 16 16 16 8 | mCRASH=>
OUTPUT(B) | 16 16 16 16 16 | roioUTPUTED!

D

Other Xacts might start using A, B (in a “strict” way) without pulling them from disk
(i.e., directly from buffer manager) . Not applicable in Undo Logging (where datal0-23
needs to be first OUTPUT to disk (before COMMIT)

Redo-Logging Rule
(Write-Ahead Rule)

R1 (Commit-then-Output): If T modifies X, then
both <T,X,v>and <COMMIT T> must be written
to disk before X Is written to disk

..e., Write to Log: COMMIT A
Write to Disk: OUTPUT A

« Hence: OUTPUTs are done late

 This rule also known as Write-Ahead-Rule
l.e., Write Ahead Log (WAL), I.e., writing log
records ahead of actual data records.

10-24

Recovery with Redo Log
(Repeat Committed)

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,V5>

Questionl:
Which updates are redone ?

Question 2:
How far back do we need to
read in the log down ?

@

10-25

Recovery with Redo Log
(Repeat Committed)

After system’s crash, run recovery manager

« Step 1. Process the Log from START and
decide for each transaction T whether it is
completed or not (how? See next slide)

— <START T>....<COMMIT T>.... =COMPLETE
— <START T>....<ABORT T>....... = COMPLETE
— <START T>...ccciiiiiiiiceae = INCOMPLETE

« Step 2. Read log from the beginning, redo all
updates of committed transactions (not
outputed)

— Do not repeat the uncommitted ones (let the

application that initiated them worry about repeating
them)

10-26

Recovery with Redo Log

How does the Recovery Manager classify Xacts?

 Read log from end :
— <COMMIT T>: mark T as completed
— <ABORT T>: mark T as completed

 Read log from the start; cases:

— <T,X,v>:1f (T isincomplete) then // opposite to UNDO
lgnore

else // complete & committed
Write X=newest(Vv) to disk
— <START T>: ignore

* Foreach incomplete T write an <Abort T> record
to the end of the log and flush the log. 10-27

Nonguiescent Checkpointing
with REDO Logging

« Write a <START CKPT(T1,...,Tk)>
where T1,...,Tk are all active transactions
— Same with UNDO Checkpointing

e Flush to disk all blocks of committed

transactions (dirty blocks), while continuing
normal operation

— This solves the problem: DIRTY blocks go to disk

« When all blocks have been written, write <END
CKPT>

« Same with UNDO Checkpointing

10-29

Redo Recovery with Nonquiescent
Checkpointing

Step 1. look for the last
<END CKPT>

<START T1> Step 3: redo from
the earliest start of a
<COMMIT T1> transaction listed in
. <START CKPT ...>
: <START T4> ’
Step 2: find i.e. T4, T5, T6

corresponding

“START CKPT > <START CKPT T4, T5, T6>

(transactions
committed

earlier can be
ignored, e.g., T1., as
<END CKPT> these were

// .now T4 committed in OUTPUTed by prior
log but not OUTPUTed. START..END block)

All OUTPUTs of T1 are
now known to be on disk

<START CKPT T9, T10> 10-30

