
10-1
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

EPL646 – Advanced Topics in Databases

Lecture 10

Crash Recovery: Undo, Redo, Undo/Redo

Logging and Recovery

Chapter 17: Database Systems: The Complete Book

Garcia-Molina, Ullman, Widom, 2ED

Demetris Zeinalipour

http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

Department of Computer Science

University of Cyprus

http://www2.cs.ucy.ac.cy/~dzeina/

10-2
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Recovery: Outline

• Recovery: Definitions, Purpose, Failure

Reasons, ACID Properties and

Responsibilities

• Three Types of Recovery

– Undo (uncommitted) Logging

– Redo (committed) Logging

– Undo/Redo Logging (not discussed)

• Checkpointing and Nonquiescent

Checkpointing

10-3
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Database Recovery
Ανάκαμψη σε Βάσεις Δεδομένων

• Purpose of Database Recovery (Σκοπός Ανάκαμψης)

– To bring the database into the last consistent state,
which existed prior to the failure.

– To preserve transaction properties (Atomicity,
Consistency, Isolation and Durability), especially the
bold properties.

• Example:

– Α system crashes before a fund transfer
transaction commits its execution,

– Either one or both accounts may have an incorrect
value.

– Thus, the database must be restored to the state
before the transaction modified any of the accounts.

10-4
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Failure Reasons of Transactions
(Λόγοι Σφάλματος Δοσοληψιών)

Type of Crash Prevention

Wrong data entry
Constraints and

Data cleaning

Disk crashes
Redundancy:

e.g. RAID, archive

Fire, theft,

bankruptcy…

Buy insurance,

Change jobs…

System failures:

e.g. power, OS, RAM

Our focus:

DATABASE

RECOVERY

Most

frequent

10-5
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Review: The ACID properties
(Επανάληψη: Οι ιδιότητες ACID)

• Atomicity (Ατομικότητα): All actions in the Xact happen, or

none happen (Responsibility: Recovery Manager).

• (Semantic) Consistency (Συνέπεια): If each Xact is

consistent, and the DB starts consistent, it ends up

consistent (Responsibility: User … using constraints).

• Isolation (Απομόνωση): Execution of one Xact is isolated

from that of other Xacts (Responsibility: Concurrency

Control Manager).

• Durability (Μονιμότητα): If a Xact commits, its effects

persist (Responsibility: Recovery Manager).

• The Recovery Manager guarantees Atomicity & Durability

10-6
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

System Model & Definitions

(Μοντέλο Συστήματος & Ορισμοί)
• Assumption: the database is composed of reads/writes

over some elements

– Usually 1 element = 1 block

– Can be smaller (=1 record) or larger (=1 relation)

• Symbols Utilized
– X database object

– t local (program) variable

program (memory) memory buffer

(aka Buffer Manager)
Database disk

X X t

INPUT(X) READ(X,t)

WRITE(X,t) OUTPUT(X)

10-7
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Example Used in these Slides
READ(A,t); t := t*2;WRITE(A,t); READ(B,t); t := t*2;WRITE(B,t)

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

10-8
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

System Failures and Logs

• Each transaction (program) has an internal state

• When system crashes, internal state is lost

– Don’t know which parts executed and which didn’t

• Remedy: use a log

– A sequential file that keeps track of all transaction

operations that affect the values of database items.

– Log is maintained both on disk and buffer (will see

next) where, how, when.
Log Page

Log Page

10-9
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Transaction Log

(Κατάστιχο Δοσοληψιών)

• An append-only file containing log records

• Note: multiple transactions run concurrently, log

records are interleaved

• After system crash, use log to do either or both:

– Undo updates of uncommitted xacts (from end)

– Redo updates of committed xacts (that have not

been OUTPUTTED to disk) (from start)

• Three kinds of logs: undo, redo, undo/redo
Log Page

LogRec LogRec

LogRec LogRec

Log Page

Log Page

10-10
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Recovery A: Undo Logging

Log records

• <START T>

– transaction T has begun

• <COMMIT T>
– T has committed

• <ABORT T> (aka. Rollback)

– T has aborted

• <T,X,v>
– T has updated element X, and its old value was v

10-11
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Action t Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG (now all log records appear on disk)

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

<COMMIT T>

FLUSH LOG (now COMMIT T appears on disk as well)

Undo-Logging Example

(Log-then-output, Commit later)

old value

!!! CRASH =>

 UNDO OUTPUT(A)

Takes time

Takes time

10-12
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Undo-Logging Rules

The following two rules must be obeyed:

U1 (Log then Output) : If T modifies X, then <T,X,v>
must be written to disk BEFORE X is output to disk

 π.χ., Write to Log: <T,A,8> then Flush Log then

 Write to Disk: OUTPUT A

U2 (Commit Later): If T commits, then <COMMIT T>
must be written to disk only after all changes by T
are output to disk

 π.χ., Write to Disk: OUTPUT A then

 Write to Log: COMMIT A then Flush Log

– Hence: OUTPUTs are done early, before the transaction
commits

10-13
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Recovery with Undo Log

(Abort Uncommitted)

…

…

<T6,X6,v6>

…

…
<START T5>

<START T4>

<T1,X1,v1>

<T5,X5,v5>

<T4,X4,v4>
<COMMIT T5>

<T3,X3,v3>

<T2,X2,v2>

Question1:

Which updates are undone ?

Question 2:

How far back do we need to

read in the log ?

crash

General Idea: Undo Uncommitted

Transactions (see next slide for details)

10-14
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Recovery with Undo Log

After system’s crash, run Recovery Manager

• Step 1. Process the Log from END and decide
for each transaction T whether it is completed
or not (how? See next slide)
– <START T>….<COMMIT T>…. = COMPLETE

– <START T>….<ABORT T>……. = COMPLETE

– <START T>……………………… = INCOMPLETE

• Step 2. Undo all modifications by incomplete
transactions (see next slide)

10-15
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Recovery with Undo Log

How does the Recovery Manager classify Xacts?

• Read log from the end; cases:

– <COMMIT T>: mark T as completed

– <ABORT T>: mark T as completed

– <T,X,v>: if (T is completed) then

 Ignore

 else // incomplete

 Write X=oldest(v) to disk (i.e. reset X to its

 initial value, higher in the log)

– <START T>: ignore

10-16
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Crashing During Recovery with

Undo Log

• System Crash during Recovery with Undo Log.

What happens?

– We can repeat all actions from scratch for a second

time, no harm is done.

• Why?

– All undo commands are idempotent (ταυτοδύναμες)

• T1(A); crash; T1(A); T2(A)

Generates the same result with:

• T1(A); T2(A)

because «<Ti,A,v> holds the previous value v of object A

(wouldn’t apply if v was holding the difference from previous

value)

10-17
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Recovery with Undo Log

When do we stop reading the log ?

• We cannot stop until we reach the beginning of

the log file

Why?

• Think about <START T1> on first line without

<COMMIT|ABORT T1>

So Recovery is not very practical!

• Better idea: use checkpointing

10-18
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Checkpointing

(Σημείο Έλεγχου)

Idea: Checkpoint the database periodically.

How?

• Stop accepting new transactions

• Wait until all current transactions complete

• Write a <CKPT> log record

• Resume transactions

10-19
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Undo Recovery with Checkpointing

…

…

<T9,X9,v9>

…

…
(all completed)

<CKPT>

<START T2>

<START T3

<START T5>
<START T4>

<T1,X1,v1>

<T5,X5,v5>

<T4,X4,v4>

<COMMIT T5>
<T3,X3,v3>

<T2,X2,v2>

During recovery,

Can stop at first

<CKPT>

 transactions T2,T3,T4,T5

 other transactions

crash

10-20
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Nonquiescent Checkpointing

(Μη-αδρανές Checkpointing)
• Problem with checkpointing: What happens

with long running xacts ? => database freezes

during checkpoint

• Would like to checkpoint while database is

operational

• Idea: Νonquiescent Checkpointing (μη-

αδρανές σημείο έλεγχου):

– Write a <START CKPT(T1,…,Tk)>

where T1,…,Tk are all active transactions

– Continue normal operation

– When all of T1,…,Tk have completed, write <END

CKPT>

10-21
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Undo Recovery with Nonquiescent

Checkpointing

…

…

// Start Monitoring active

Xacts T4, T5,T6

<START CKPT T4, T5, T6>

…

//Wait until all active commit

or abort (do not prohibit other

from starting)

…

…

Write when T4, T5,T6

complete

<END CKPT>

…

…

During recovery,

Can stop at first

<CKPT>

(provided an

<END CKPT>

is seen)

New Xacts might have

begun!

 T4, T5, T6, plus

 later transactions

 earlier transactions plus

 T4, T5, T6

 later transactions

After END CKPT has been written, all records prior START CKPT can be deleted

crash

10-22
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Recovery B: Redo Logging

Log records

• <START T> = transaction T has begun

• <COMMIT T> = T has committed

• <ABORT T>= T has aborted

• <T,X,v>= T has updated element X, and its

new value is v

Problems of UNDO Logging: It requires to

OUTPUT the data before COMMIT. Thus, in

order to offer Strict Schedules we must write

all in-memory data to disk.

10-23
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Action T Mem A Mem B Disk A Disk B Log

<START T>

IREAD(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

IREAD(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

FLUSH LOG
(now all log records appear on disk). The next OUTPUT commands can

in practice come much later

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Other Xacts might start using A, B (in a “strict” way) without pulling them from disk

(i.e., directly from buffer manager) . Not applicable in Undo Logging (where data

needs to be first OUTPUT to disk (before COMMIT)

Redo-Logging Example

(Commit-then-Output)

!!! CRASH =>

 REDO COMMITTED
not OUTPUTED!

IREAD: INPUT & READ

10-24
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Redo-Logging Rule

(Write-Ahead Rule)

R1 (Commit-then-Output): If T modifies X, then

both <T,X,v> and <COMMIT T> must be written

to disk before X is written to disk

 i.e., Write to Log: COMMIT A

 Write to Disk: OUTPUT A

• Hence: OUTPUTs are done late

• This rule also known as Write-Ahead-Rule

i.e., Write Ahead Log (WAL), i.e., writing log

records ahead of actual data records.

10-25
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Recovery with Redo Log

 (Repeat Committed)

<START T1>

<T1,X1,v1>

<START T2>

<T2, X2, v2>

<START T3>
<T1,X3,v3>

<COMMIT T2>

<T3,X4,v4>

<T1,X5,v5>

…
…

Question1:

Which updates are redone ?

Question 2:

How far back do we need to

read in the log down ?

crash

10-26
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Recovery with Redo Log

(Repeat Committed)

After system’s crash, run recovery manager

• Step 1. Process the Log from START and
decide for each transaction T whether it is
completed or not (how? See next slide)
– <START T>….<COMMIT T>…. = COMPLETE

– <START T>….<ABORT T>……. = COMPLETE

– <START T>……………………… = INCOMPLETE

• Step 2. Read log from the beginning, redo all
updates of committed transactions (not
outputed)

– Do not repeat the uncommitted ones (let the
application that initiated them worry about repeating
them)

10-27
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Recovery with Redo Log

How does the Recovery Manager classify Xacts?

• Read log from end :

– <COMMIT T>: mark T as completed

– <ABORT T>: mark T as completed

• Read log from the start; cases:

– <T,X,v>: if (T is incomplete) then // opposite to UNDO

 Ignore

 else // complete & committed

 Write X=newest(v) to disk

– <START T>: ignore

• For each incomplete T write an <Abort T> record

to the end of the log and flush the log.

10-29
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Nonquiescent Checkpointing

with REDO Logging
• Write a <START CKPT(T1,…,Tk)>

where T1,…,Tk are all active transactions

– Same with UNDO Checkpointing

• Flush to disk all blocks of committed

transactions (dirty blocks), while continuing

normal operation

– This solves the problem: DIRTY blocks go to disk

• When all blocks have been written, write <END

CKPT>

• Same with UNDO Checkpointing

10-30
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Redo Recovery with Nonquiescent

Checkpointing

…

<START T1>

…

<COMMIT T1>

…

<START T4>

…

<START CKPT T4, T5, T6>

…

All OUTPUTs of T1 are

now known to be on disk

…

…

<END CKPT>

…

// now T4 committed in

log but not OUTPUTed.

…

<START CKPT T9, T10>

…

Step 2: find

corresponding

<START CKPT …>

Step 3: redo from

the earliest start of a

transaction listed in

<START CKPT …>,

i.e. T4, T5, T6

(transactions

committed

earlier can be

ignored, e.g., T1., as

these were

OUTPUTed by prior

START..END block)

crash

Step 1: look for the last

<END CKPT>

