
9-1
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

EPL646 – Advanced Topics in Databases

Lecture 9

Concurrency Control

(with Locking, with Timestamps)

Chapter 18.1: Elmasri & Navathe, 5ED

Chapter 17.1-17.4: Ramakrishnan & Gehrke, 3ED

Demetris Zeinalipour

http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

Department of Computer Science

University of Cyprus

http://www2.cs.ucy.ac.cy/~dzeina/

9-3
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Intro to DBMS Concurrency Control
(Εισαγωγή σε Έλεγχο Ταυτοχρονίας ΣΔΒΔ)

• In the previous lecture we characterized transaction

schedules based on serializability and recoverability
– Serializability => Guarantee the correctness of a schedule.

– Recoverability => Guarantee that commits are durable.

• We shall now study how the DBMS enforces (επιβάλει)

these types of schedules. In particular, we shall see:

• Concurrency Control with Locking
– Locking (Κλείδωμα): Use locks to prevent multiple transactions from

accessing the items concurrently.

• Concurrency Control without Locking
– Timestamp Ordering (Διάταξη Χρονόσηµων) : Ensure serializability

using the ordering of timestamps generated by the DBMS.

– Multiversion CC: Use multiple version of items to enforce serializability.

– Optimistic CC: No checking done during execution of a Transaction but

post-execution validation (επικύρωση) enforces serializability.

9-4
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Concurrency Control with Locking

 (Έλεγχος Ταυτοχρονίας με Κλείδωμα)

• What is a Lock (Κλειδαριά)
– A variable associated with a data item that describes the status

of the item with respect to possible operations that can be
applied to it (e.g., read lock, write lock).

– Locks are used as means of synchronizing the access by
concurrent transactions to the database items.

– There is one lock per database item.

• The portion of the database a data item represents is
referred to as Locking Granularity (Κλιμάκωση
Κλειδώματος)
– Single attribute (field), Disk Block, Whole File or even whole DB!

• Problems arising from Locks? (studied next)
– Deadlock (Αδιέξοδο): Two more competing transactions are

waiting for each other to complete to obtain a missing lock.

– Starvation (Λιμοκτονία): A transaction is continually denied
access to a given data item.

9-5
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Concurrency Control with Locking

 (Έλεγχος Ταυτοχρονίας me Κλείδωμα)

• Purpose of CC with Locking
– To enforce (επιβάλει) Isolation (Απομόνωση) through

mutual exclusion among conflicting transactions.
• Mutual Exclusion (Αμοιβαία Απόκλιση): avoid the

simultaneous use of a common resource by pieces of code
called critical sections that utilize locks.

– To preserve (διατηρήσει) database Consistency
(Συνέπεια) through consistency preserving execution
of transactions.

– To resolve RW, WR and WW conflicts.

• Example Scenario:
– In concurrent execution environment if T1 conflicts with T2 over a

data item A,

– Then the existing CC decides which of T1 or T2 should get
access to A and which of T1 or T2 should be rolled-back or wait.

9-6
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Locks and Types of Locks
(Κλειδαριές και Τύποι Κλειδαριών)

• Locking (Κλείδωμα) is an operation that secures

– (a) permission to Read

– (b) permission to Write a data item for a transaction.

 Example:

– Lock (X). Data item X is locked on behalf of the requesting
transaction.

• Unlocking (Ξεκλείδωμα) is an operation that removes
these permissions from the data item.

 Example:

– Unlock (X): Data item X is made available to all other transactions.

• Lock and Unlock are atomic operations (all-or-nothing).
– e.g., if we lock a table, either the complete table is locked or no

tuple in the table is locked.

• Locking Protocols are the defacto mechanism to enforce
serializability in DBMSs. They usually operate in 2 phases:

– Phase 1: Locking, Phase 2: Unlocking. 2PL (Two Phase Locking), that we will see next, is one such protocol.

9-7
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Types of Locks
(Τύποι Κλειδαριών)

• There are two types of Locks: Binary Locks and
Shared/Exclusive (or Read/Write Locks).

• Binary Locks (Δυαδικές Κλειδαριές)
– A binary lock has two states: Locked / Unlocked

– If a DB item X is locked, then X cannot be accessed by
any other DB operation.

– Simple Model but two restrictive (περιοριστικό) as only
a single transaction can hold a lock on given item.

– Consequently, we will not use these locks…

• Shared/Exclusive (or Read/Write Locks).
– In Greek: Μεριζόμενο/Αποκλειστικό Κλείδωμα

– Three states: Read Locked / Write Locked / Unlocked
– Several Xacts can access the same item X for reading (Shared Lock),

however writing requires a Write (Exclusive) Lock.

9-10
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Implementing Locks in a DBMS
(Υλοποίηση Κλειδαριών στη ΣΔΒΔ)

How is Locking Implemented Inside a DBMS?

• Lock Manager (Διαχειριστής Κλειδωμάτων):

– Managing locks on data items using a Lock Table.

• Lock table (Πίνακας Κλειδώσεων):

– Lock manager uses it to store:
• Transaction ID: Identity of transaction locking a data item.

• The data item ID: E.g., DBName, TableID, PageID or RID

• Lock mode: Read-Locked, Write-Locked, Unlocked

• Pointer to Lock Queue: Such that next in queue can be notified

 T1

Transaction ID Data item id lock mode Pointer to Lockqueue

X1 Read 0x00AF04BF

9-11
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Conversion of Locks
(Μετατροπή Κλειδωμάτων)

• Conversion of Locks (Μετατροπή Κλειδώματος):

When a transaction that already holds a lock on a data

item X is allowed to change its lock status as follows:

– Lock Upgrade (Αναβάθμιση Κλειδώματος):

 if Ti is the ONLY Xact that has a Read-lock(X) then

 Convert Read-lock(X) to Write-lock(X)

 else // Other Xact needs to release X first

 Force Ti to wait

 (Wait until all the Xact that holds the lock unlocks X)

– Lock Downgrade (Υποβάθμιση Κλειδώματος):

 if Ti has a Write-lock(X)

 // Note that no other Xact can have any lock on X

 Convert Write-lock(X) to Read-lock(X)

9-12
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

CC with Locking: Techniques
 (Έλεγχος Ταυτοχρονίας με Κλείδωμα: Τεχνικές)

• Do locks guarantee serializability (correctness) of

schedules on their own? NO

• Let us consider the following example: Schedules T1;T2

and T2;T1 generate the expected correct results.

• Now consider the following correct execution T1;T2 or

T2;T1. We shall see in the next slide that by using a wrong

sequence of locks might generate a wrong result.

 T1 T2 Result

 read_lock (Y); read_lock (X); Initial values: X=20; Y=30

 read_item (Y); read_item (X); Result of serial execution A (correct)

 unlock (Y); unlock (X); T1 followed by T2 (T1; T2)

 write_lock (X); write_lock (Y); X=50, Y=80.

 read_item (X); read_item (Y);

 X:=X+Y; Y:=X+Y; Result of serial execution B (correct)

 write_item (X); write_item (Y); T2 followed by T1 (T2; T1)

 unlock (X); X=70, Y=50

1)Y=30

2) X=20

3) X=50

4) X=50

5) Y=30

6) Y=80

T1;T2

9-13
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

CC with Locking: Techniques
 (Έλεγχος Ταυτοχρονίας με Κλείδωμα: Τεχνικές)

• Why Locking is not adequate in its own to
guarantee serializability?

 T1 T2 Initial values: X=20; Y=30

 read_lock (Y);
 read_item (Y); Serial Result T1;T2: X=50, Y=80
 unlock (Y);
 read_lock (X); Serial Result T2;T1: X=70, Y=50
 read_item (X);
 unlock (X);
 write_lock (Y); Result of Schedule on Left
 read_item (Y);
 Y:=X+Y; X=50; Y=50
 write_item (Y);
 unlock (Y); Since result not equal to any
 write_lock (X); serial schedule the left schedule
 read_item (X); is Nonserializable.
 X:=X+Y;
 write_item (X);
 unlock (X);

Time

Y=30

X=20

Y=20+30=50

X=20+30=50

X=20

The above example demonstrates that locks

can not be obtained in an arbitrary manner!

See next slide for solutions….

Y=30

y=30!!!

9-14
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Two-Phase Locking (2PL)
(Πρωτόκολλο Κλειδώματος Δυο Φάσεων)

• Two-Phase Locking Protocol (2PL) (Πρωτόκολλο Κλειδώματος
Δυο Φάσεων): A Concurrency Control locking protocol that
guarantees serializability.

• The protocol operates in the following phases:

1. Locking (Growing) Phase: locks are acquired and NO locks are

released.

2. Unlocking (Shrinking) Phase: locks are released and NO locks are

acquired.

• Requirements:

– For a transaction these two phases must be mutually

exclusively – αμοιβαία αποκλειόμενα (i.e., no locking during

Unlocking and vice-versa)

– If lock conversion is allowed, then upgrading of locks must

happen during the Growing Phase and downgrading of locks

during the Shrinking Phase.

• Theorem: If every transaction in a schedule follows the two-phase

locking protocol, the schedule is guaranteed to be serializable.

9-15
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Two-Phase Locking Variants
(Παραλλαγές Πρωτοκόλλου Κλειδώματος Δυο Φάσεων)

We will study four (4) variants of two-phase locking:

1. Conservative or Static 2PL (Συντηρητικό 2PL):

– Action: Locks ALL desired data items before
transaction begins execution.

• Deadlock-free, obtain all locks or none.

• Guarantees Serializability (recall the 2PL Theorem)

• Not-Practical, as read and write sets need to be pre-
declared)

• Not Strict Schedule for Recoverability, as some
transaction can read or write an item that is written
by T, before T has committed.

2. Basic (Βασικό 2PL):

– Action: Locks data items incrementally. Unlocks
data items incrementally w/out obtaining new locks.

• NOT Deadlock-free (see example in 1 slide)

• Guarantees Serializability (recall the 2PL Theorem)

• Practical (but not as practical as Strict 2PL)

• Not Strict Schedule for Recoverability, as some
transaction can read or write an item that is written
by T, before T has committed.

Basic 2PL

G
ro

w
in

g

Conservative 2PL

T T’
X(A)

W(A)

Rel(A)

 X(A)

 W(A)

Abort

 Commit

(Recoverable but not

Strict)

*

*

*

9-16
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Deadlocks in Locking
(Αδιέξοδα στο Κλειδώματα)

• Although Basic 2PL guarantees serializability

 (correctness) by incrementally acquiring the locks

 and by releasing them at the end,

 Basic 2PL suffers from Deadlocks!
– The fact that it does not offer recoverability will be addressed next with Strict 2PL

 T’1 T’2

 read_lock (Y);

 read_item (Y);

 read_lock (X);

 read_item (X);

 write_lock (X);

 (waits for X) write_lock (Y);

 (waits for Y)

Basic 2PL

Deadlock (Αδιέξοδο):

Cycle of transactions waiting

for locks to be released by

each other.

Let’s see how to overcome deadlocks…

9-19
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Dealing with Deadlocks in Locking
(Διαχείριση Αδιέξοδων στο Κλείδωμα)

1. Deadlock Detection (Ανίχνευση Αδιεξόδου)

– In this approach, deadlocks are allowed to happen

– The scheduler maintains a wait-for-graph (add edges when waiting,

drop edges when obtaining the expected lock)

– If a cycle exists, then one transaction involved in the cycle is selected

(victim) and rolled-back (need to carefully select victim)

Example of Deadlock Detection:

T1: S(A), R(A), S(B)

T2: X(B),W(B) X(C)

T3: S(C), R(C) X(A)

T4: X(B)

T1 T2

T4 T3

Cycle Found!

Deadlock

(DFS search

in O(V+E))

9-20
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Dealing with Deadlocks in Locking
(Διαχείριση Αδιέξοδων στο Κλείδωμα)

• Starvation (Λιμοκτονία)

– Occurs when a particular transaction
consistently waits or restarted and never
gets a chance to proceed further.

• e.g., in previous example it is possible that the
same transaction may consistently be selected
as victim and rolled-back.

– This limitation is inherent in all priority based
scheduling mechanisms

• i.e., if we favor transactions with given
characteristics, other transactions might always
starve.

9-21
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Two-Phase Locking Variants
(Παραλλαγές Πρωτοκόλλου Κλειδώματος Δυο Φάσεων)

3. Strict (Αυστηρό 2PL):
– Stricter than the Basic algorithm (i.e., exclusive locks X-locks

are only released after commit or abort, no xact can utilize them in
its growing phase). Shared-locks (S-locks) are released earlier.

– Characteristics:
• Not Deadlock-free, Guarantees Serializability (2PL Theorem),

• Practical, in fact this is the most commonly used two-phase locking
algorithm, Leads to Strict Schedule for Recoverability, as no other
transaction can read or write an item that is written by T, unless T
has committed.

• Note that a Strict Schedule != Serial Schedule as a Strict
Schedule allows interleaving of non-conflicting actions.

Strict 2PL

Commit then

Release X-locks

T’ T
S(A)

X(B)

R(A)

Rel(A)

 S(A)

 R(A)

W(B)

Commit

Rel(B)

 X(B)

 W(B)

Commit then

Release X-locks

Strict 2PL

T’ T

s
h
ri
n
k
in

g

Example:

Releasing Shared

Lock earlier gives

space for higher

concurrency

9-22
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Two-Phase Locking Variants
(Παραλλαγές Πρωτοκόλλου Κλειδώματος Δυο Φάσεων)

4. Rigorous (Ακριβής 2PL):

– Even more restrictive than Strict 2PL (i.e., exclusive
and shared locks are only released after commit or
abort), i.e., Serializability Order == Commit Order

• Deadlock-free (no Xact holds S-lock on item we might need),

• Guarantees Serializability,

• Not Practical, but used in many DBMS!

• Leads to Strict Schedule for Recoverability, as no other
transaction can read or write an item that is written by T unless
T has committed.

– Note that a Rigorous Schedule != Serial Schedule as a Rigorous
Schedule allows interleaving of non-conflicting actions.

G
ro

w
in

g
 S

h
rin

k
in

g
 o

f

A
L
L
 L

o
c
k
s

Rigorous 2PL

Commit or abort

G
ro

w
in

g

S
h
rin

k
in

g
 o

f

A
L
L
 L

o
c
k
s

Commit or abort T’ T

T’ T
S(A)

X(B)

R(A)

W(B)

Rel(A)

Rel(B)

Commit

 S(A)

 R(A)

 X(B)

 W(B)

s
h
ri
n
k
in

g

9-23
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Concurrency Control in DBMSs
(Έλεγχος Ταυτοχρονίας σε ΣΔΒΔ)

• We will now see another class of protocols

based on Timestamps.

• Concurrency Control with Timestamps

(without Locking)
– Timestamp Ordering (Έλεγχος Ταυτοχρονισμού με Διάταξη

Χρονόσηµων): Ensure serializability using the ordering of

timestamps generated by the DBMS.

– Multiversion CC (Έλεγχος Ταυτοχρονισμού Με Πολλαπλές

Εκδόσεις): Use multiple version of items to enforce serializability.

– Optimistic CC (Αισιόδοξος (Οπτιμιστικός) Έλεγχος

Ταυτοχρονισμού): No checking done during execution of a

Transaction but post-execution validation (επικύρωση) enforces

serializability.

9-24
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus) Younger Transaction Older Transaction

Timestamp based CC: Definitions
(Έλεγχος Ταυτοχρονίας με Χρονόσημα: Ορισμοί)

• Timestamp (Χρονόσημο)

– A monotonically increasing variable (integer)

indicating the age of an operation or a transaction.

• A larger timestamp indicates a more recent transaction

– Timestamps are assigned in our context during Xact creation.

– Using date timestamps (e.g., a long integer that represents the

number of seconds that have elapsed from 1/1/1970)

• TS1: 1237917600 (2009-03-24 18:00:00)

• TS2: 1237917610 (2009-03-24 18:00:10)

– Using a counter timestamp (e.g., using a counter stored inside

the Operating System kernel such as a semaphore)

Time TS1 TS2

10 sec Now

9-25
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Timestamp based CC: Definitions
(Έλεγχος Ταυτοχρονίας με Χρονόσημα: Ορισμοί)

• Assume a collection of data items that are accessed, with read and

write operations, by transactions.

• For each data item X the DBMS maintains the following values:

– RTS(X): The Timestamp on which object X was last read (by some

transaction Ti, i.e., RTS(X):=TS(Ti))

– WTS(X): The Timestamp on which object X was last written (by

some transaction Tj, i.e., WTS(X):=TS(Tj))

• For the following algorithms we use the following assumptions:

– A data item X in the database has a RTS(X) and WTS(X) (recorded
when the object was last accessed for the given action)

– A transaction T attempts to perform some action (read or write) on
data item X on timestamp TS(T)

• Problem: We need to decide whether T has to be aborted or whether T can
continue execution.

Time
TS(Ti) TS(Tj)

RTS(X)

Transaction T needs to perform some

action (read, write) on data item X

TS(T): Action(X)

WTS(X)

9-26
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Basic Timestamp Ordering Algorithm
(Βασικός Αλγόριθμος Διάταξης Χρονοσήμων)

• We shall now present the first algorithm, coined Basic
Timestamp Ordering (TO), that utilizes Timestamps to
guarantee serializability of concurrent transactions.

• Timestamp Ordering (TO) Rule
– if pa(x) and qb(x) are conflicting operations, of xacts Ta and Tb for

item x, then pa(x) is processed before qb(x) iff () ts(Ta) < ts(Tb)

– Main Idea: Conflicts are only allowed from older transactions (with
smaller ts) to a younger transaction T (with larger ts)

– Main Idea Example:

• Theorem: If the TO rule is enforced in a schedule then
the schedule is (conflict) serializable.

• Why? Because cycles are not possible in the Conflict
Precedence Graph (Γράφος Προτεραιότητας Συγκρούσεων)!

transaction

with smaller

timestamp

T with larger

timestamp

WTS(X) or

RTS(X)

Time

TS(T)
Note that the conflict

moves only to the

right not to the left!

9-28
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Basic Timestamp Ordering Algorithm
(Βασικός Αλγόριθμος Διάταξης Χρονοσήμων)

• Basic Timestamp Ordering (TO) Algorithm
 Case 1 (Read X by T): Transaction T issues a read(X) operation

A. If TS(T) < WTS(X), then read(X) is rejected (as the TO rule is violated).

 T has to abort and be rejected.

B. If WTS(X)  TS(T), then execute read(X) of T and update RTS(X).

Case 2 (Write X by T): Transaction T issues a write(X) operation

A. If TS(T) < RTS(X) or if TS(T) < WTS(X), then write is rejected.

B. If RTS(X)  TS(T) or WTS(X)  TS(T), then execute write(X) of T and
update WTS(X)

Reject T

(TO rule violated)

WTS(X)

Time

Accept T (TO ok)
TS(T): Read(X)

WTS(X) TS(T): Write(X)

Time

Reject T (TO rule violated)

WTS(X)

Time

Accept T (TO ok)
TS(T): Write(X)

WTS(X)

Time

TS(T): Read(X)

X

X

RTS(X) TS(T): Write(X)

Time X

RTS(X)

Time

TS(T): Write(X)

Happens if T started

earlier than T’ (that

wrote X) … see

example on slide 16.9

R/R not conflicting action so

RTS(X) ? TS(T) not investigated

9-29
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Basic TO Algorithm Example
(Παράδειγμα Βασικός Αλγόριθμος Διάταξης Χρονοσήμων)

• Consider the following scenario:

– Two transactions T1 and T2

– Initially RTS=0 and WTS=0 for data items X, Y

– Timestamps are as follows: TS(T1)=10 and TS(T2)=20

T2(20)
1. A1 = Read(X)

2. A1 = A1 * 1.01

3. Write(X, A1)

4. A2 = Read(Y)

5. A2 = A2 * 1.01

6. Write(Y, A2)

T1(10)
1. A1 = Read(X)

2. A1 = A1 – k

3. Write(X, A1)

4. A2 = Read(Y)

5. A2 = A2 + k

6. Write(Y, A2)

9-30
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Basic TO Algorithm Example
(Παράδειγμα Βασικός Αλγόριθμος Διάταξης Χρονοσήμων)

• Is the schedule serializable?
– Utilize the Basic TO Algorithm to justify your answer (otherwise the

precedence graph could have be used to answer this question)

T2(20)

1. A1 = Read(X)

2. A1 = A1* 1.01

3. Write(X, A1)

4. A2 = Read(Y)

5. A2 = A2 * 1.01

6. Write(Y, A2)

 T1(10)

1. A1 = Read(X)

2. A1 = A1 – k

3. Write(X, A1)

4. A2 = Read(Y)

5. A2 = A2 + k

6. Write(Y, A2)

 RTS(X) : 10

 WTS(X) : 10

 RTS(Y) : 0

 WTS(Y) : 0
 RTS(X) : 20

 WTS(X) : 20

 RTS(Y) : 0

 WTS(Y) : 0
 RTS(X) : 20

 WTS(X) : 20

 RTS(Y) : 10

 WTS(Y) : 10
 RTS(X) : 20

 WTS(X) : 20

 RTS(Y) : 20

 WTS(Y) : 20

Yes! The schedule is serializable!

This can be confirmed by the

precedence graph which is acyclic

WTS(X)

Time

TS(T): Read(X)

WTS(X)

Time

TS(T): Write(X)

9-31
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Basic TO Algorithm Example
(Παράδειγμα Βασικός Αλγόριθμος Διάταξης Χρονοσήμων)

• Is the schedule serializable?
– Utilize the Basic TO Algorithm to justify your answer

T2(20)

1. A1 = Read(X)

2. A1 = A1* 1.01

3. Write(X, A1)

4. A2 = Read(Y)

5. A2 = A2 * 1.01

6. Write(Y, A2)

 T1(10)
1. A1 = Read(X)

2. A1 = A1 – k

3. Write(X, A1)

4. A2 = Read(Y)

5. A2 = A2 + k

6. Write(Y, A2)

 RTS(X) : 10

 WTS(X) : 10

 RTS(Y) : 0

 WTS(Y) : 0

 RTS(X) : 20

 WTS(X) : 20

 RTS(Y) : 20

 WTS(Y) : 20

NO! The schedule is NOT serializable

• this is confirmed with the precedence graph which is cyclic

WTS(X)

Time

TS(T): Read(X)

WTS(X)

Time

TS(T): Write(X)

Reject T1 (TO rule violated)

(Restart with new TS)

WTS(Y)=

20

Time

TS(T1)=10

X

X

The Basic TO

algorithm only

ensures

serializability.

Recoverability is

discussed in the

context of ths

Strict TO.

9-32
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Advantages/Disadvantages of Basic TO
(Πλεονεκ./Μειονεκ. του Βασικού Αλγ. Διατ. Χρον.)

• Basic TO Remark
– Note that there is no notion of RR-conflict

If TS(T) < RTS(X), then execute read(X) of T and update RTS(X).

• Advantages of Basic TO Algorithm
– Schedules are serializable (like 2PL protocols)

– No waiting for transaction, thus, no deadlocks!

• Disadvantages
– Schedule may not be recoverable (read uncomit. data)

• Solution: Utilize Strict TO Algorithm (see next)

– Starvation is possible (if the same transaction is
continually aborted and restarted)
• Solution: Assign new timestamp for aborted transaction

Accept T

(TO rule NOT violated)

RTS(X)

Time

TS(T): Read(X)

9-33
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Strict Timestamp Ordering
(Αυστηρός Αλγόριθμος Διάταξης Χρονοσήμων)

• The Basic T.O. algorithm guarantees serializability but not

recoverability (επαναφερσιμότητα)

• The Strict T.O. algorithms introduces recoverability.

– (Revision) Strict Schedule: A transaction can neither read or write

an uncommitted data item X.

• Strict T.O. Main Idea: Extend the Accept cases of the

Basic T.O. algorithm by adding the requirement that a

commit occurs before T proceeds with its operation. i.e.,

WTS(X)

Time

Accept T (TO ok)
TS(T): Read(X)

WTS(X)

Time

Accept T (TO ok)
TS(T): Write(X) RTS(X)

Time

TS(T): Write(X)

commit

commit commit

For read()

WTS(X)  TS(T)

For write()

RTS(X)  TS(T) or WTS(X)  TS(T)

Remove

Unrepeatable reads Remove Lost updates

Remove Dirty Reads

