Department of Computer Science
University of Cyprus

EPL646 — Advanced Topics in Databases
Lecture 9

Concurrency Control
(with Locking, with Timestamps)

Chapter 18.1: EImasri & Navathe, 5ED
Chapter 17.1-17.4. Ramakrishnan & Gehrke, 3ED

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

9-1

http://www2.cs.ucy.ac.cy/~dzeina/

Intro to DBMS Concurrency Control
(Elcaywyn o€ 'EAgeyxo Tautoxpoviac 2ABA)

In the previous lecture we characterized transaction
schedules based on serializability and recoverability

— Serializability => Guarantee the correctness of a schedule.
— Recoverability => Guarantee that commits are durable.

We shall now study how the DBMS enforces (etiaAel)
these types of schedules. In particular, we shall see:

Concurrency Control with Locking

— Locking (KAsidwpa): Use locks to prevent multiple transactions from
accessing the items concurrently.

Concurrency Control without Locking

— Timestamp Ordering (Aiatagn Xpovoéonuwyv) : Ensure serializability
using the ordering of timestamps generated by the DBMS.

— Multiversion CC: Use multiple version of items to enforce serializability.

— Optimistic CC: No checking done during execution of a Transaction but
post-execution validation (emkupwaon) enforces serializability.

9-3

Concurrency Control with Locking

(EAeyxoc TauTtoxpoviac ue KAsidwua)

What is a Lock (KAg1dapid)

— Avariable associated with a data item that describes the status
of the item with respect to possible operations that can be
applied to it (e.g., read lock, write lock).

— Locks are used as means of synchronizing the access by
concurrent transactions to the database items.

— There is one lock per database item.

The portion of the database a data item represents Is
referred to as Locking Granularity (KAIpdkwon
KA&g1dwpaTog)

— Single attribute (field), Disk Block, Whole File or even whole DB!

Problems arising from Locks? (studied next)

— Deadlock (Adi1£€od0): Two more competing transactions are
waiting for each other to complete to obtain a missing lock.

— Starvation (AipokTovia): A transaction is continually denied
access to a given data item. 9-4

Concurrency Control with Locking

(EAeyxoc Tautoxpoviac me KAgidwua)
* Purpose of CC with Locking

— To enforce (emipaAel) Isolation (ATropovwon) through
mutual exclusion among conflicting transactions.

« Mutual Exclusion (ApoiBaia AmokAion): avoid the
simultaneous use of a common resource by pieces of code
called critical sections that utilize locks.

— To preserve (diatnpnoel) database Consistency

(ZuveTrela) through consistency preserving execution

of transactions.

— To resolve RW, WR and WW conflicts.

 Example Scenario:

— In concurrent execution environment if T1 conflicts with T2 over a
data item A,

— Then the existing CC decides which of T1 or T2 should get

access to A and which of T1 or T2 should be rolled-back or wait. ,

Locks and Types of Locks
(KA£10aplEg kal Tutrol KAe1dapiwv)

Locking (KAcidwpa) is an operation that secures

— (a) permission to Read
— (b) permission to Write a data item for a transaction.
Example:
— Lock (X). Data item X is locked on behalf of the requesting
transaction.
Unlocking (=ekAgidwpa) is an operation that removes
these permissions from the data item.
Example:
— Unlock (X): Data item X is made available to all other transactions.

Lock and Unlock are atomic operations (all-or-nothing).

— e.g., if we lock a table, either the complete table is locked or no
tuple in the table is locked.

Locking Protocols are the defacto mechanism to enforce

serializability in DBMSs. They usually operate in 2 phases:

— Phase 1: Locking, Phase 2: Unlocking. 2PL (Two Phase Locking), that we will see next, is one such protocol: i

Types of Locks
(TuTTol KAEIOQPIWYV)

* There are two types of Locks: Binary Locks and
Shared/Exclusive (or Read/Write Locks).

 Binary Locks (Auadikég KAeIDAPIEG)
— A binary lock has two states: Locked / Unlocked

— If a DB item X is locked, then X cannot be accessed by
any other DB operation.

— Simple Model but two restrictive (TreplopIOTIKO) as only
a single transaction can hold a lock on given item.

— Consequently, we will not use these locks...

« Shared/Exclusive (or Read/Write Locks).
— In Greek: Mep1{OpeVO/ATTOKAEIOTIKO KAtidwla

— Three states: /[Write Locked / Unlocked

— Several Xacts can access the same item X for reading (Shared Lock),
however writing requires a Write (Exclusive) Lock. 9-7

Implementing Locks in a DBMS
(YAotroinon KAgidapiwy otn 2ABA)

How is Locking Implemented Inside a DBMS?

 Lock Manager (Alaxeipiotng KAEIOWHATWYV):
— Managing locks on data items using a Lock Table.

* Lock table (IMivakag KAe1dwoewv):

— Lock manager uses it to store:
« Transaction ID: Identity of transaction locking a data item.
 The data item ID: E.g., DBName, TablelD, PagelD or RID
 Lock mode: Read-Locked, Write-Locked, Unlocked
» Pointer to Lock Queue: Such that next in queue can be notified

Transaction ID Data item id | lock mode Pointer to Lockqueue
T1 X1 Read OxX00AF04BF

9-10

Conversion of Locks
(MeTtatpoTtriy KAEIDWUATWY)

« Conversion of Locks (Metarpotriy KA&IOWHATOG):
When a transaction that already holds a lock on a data
item X is allowed to change its lock status as follows:

— Lock Upgrade (AvaBaduion KAgIdwHaTOoG):

If T; is the ONLY Xact that has a Read-lock(X) then

Convert Read-lock(X) to Write-lock(X)
else // Other Xact needs to release X first
Force T, to wait
(Wait until all the Xact that holds the lock unlocks X)

— Lock Downgrade (YtroBaduion KAgIOWHATOG):
If T, has a Write-lock(X)
// Note that no other Xact can have any lock on X

Convert Write-lock(X) to Read-lock(X)
9-11

1)Y=30

2) X=20
3) X=50

CC with Locking: Techniques

(EAeyxoc¢ Tautoxpoviag pe KAsidwua: TeEXVIKEG)

Do locks guarantee serializability (correctness) of
schedules on their own? NO

Let us consider the following example: Schedules T1;T2
and T2;T1 generate the expected correct results.

Now consider the following correct execution T1;T2 or
T2;T1. We shall see in the next slide that by using a wrong
sequence of locks might generate a wrong result.

T1 T1:T2 T2 Result

read lock (Y); 4) X=50 read lock (X); Initial values: X=20; Y=30

read_item (Y); read_item (X); Result of serial execution A (correct)
unlock (Y); ___unlock (X); T1 followed by T2 (T1; T2)

write_lock (X); 2 :::8 write_lock (Y); X=50, Y=80.

read _item (X); read_item (Y);

X:=X+Y; Y:=X+Y,; Result of serial execution B (correct)
write_item (X); write_item (Y); T2 followed by T1 (T2; T1)

unlock (X); X=70, Y=50 0-12

CC with Locking: Techniques
(EAeyxoc Tautoxpoviag pe KAeidwua: TEXVIKEC)

Why Locking Is not adequate In its own to
guarantee serializability?

T1 T2 Initial values: X=20; Y=30
read lock (Y);
v=30 read_item (Y); Serial Result T1;T2: X=50, Y=80
unlock (Y);
read lock (X); Serial Result T2;T1: X=70, Y=50
read_item (X); Xx=20
unlock (X);
write_lock (Y); Result of Schedule on Left
read_item (Y); v=30
Y:=X+Y; Y=20+30=50 X=50: Y=50
write_item (Y);
y£30!!! unlock (Y); Since result not equal to any
“write_lock (X) serial schedule the left schedule
x=20 read_item (X); is Nonserializable.
X=20+30=50 X:=X+Y:
write_item (X): The above example demonstrates that locks
unlock (X); can not be obtained in an arbitrary manner!
Tithe See next slide for solutions....

9-13

Two-Phase Locking (2PL)
(MpwTtokoAAo KAeidwpatog Auo Pacewv)

Two-Phase Locking Protocol (2PL) (MpwTtokoAAo KAe1dwpaTog
Avo ®acewyv): A Concurrency Control locking protocol that
guarantees serializability.

The protocol operates in the following phases:

1. Locking (Growing) Phase: locks are acquired and NO locks are
released.

2. Unlocking (Shrinking) Phase: locks are released and NO locks are

acquired.
Requirements:

— For a transaction these two phases must be mutually
exclusively — agoifaia atrokA&idpeva (i.e., no locking during
Unlocking and vice-versa)

— If lock conversion is allowed, then upgrading of locks must
happen during the Growing Phase and downgrading of locks
during the Shrinking Phase.

Theorem: If every transaction in a schedule follows the two-phase
locking protocol, the schedule is guaranteed to be serializable.

oAl
Jd- L

Two-Phase Locking Variants
(MapaAAayéc MNMpwTokOAAou KAeidwuatog Auo Pacewv)

We will study four (4) variants of two-phase locking:
1. Conservative or Static 2PL (ZuvtnpnTtiko 2PL):

— Action: Locks ALL desired data items before Conservative 2PL

transaction begins execution. 2 e
g = 0, N
T T - Deadlock-free, obtain all locks or none. s S logy ™
6\/(&)) » Guarantees Serializability (recall the 2PL Theorem) ’
Rel(A) % * Not-Practical, as read and write sets need to be pre-
\>/<V(A>3 declared)
Abort & « Not Strict Schedule for Recoverability, as some
Commit transaction can read or write an item that is written

esrab'ebut not ~ py T, before T has committed.
trict)

Basic (Baoikoé ZPL): Basic 2PL
— Action: Locks data items incrementally. Unlocks G

data items incrementally w/out obtaining new locks. | ¢° N
 NOT Deadlock-free (see example in 1 slide) 02%4:%?9
- Guarantees Serializability (recall the 2PL Theorem) %, %

* Practical (but not as practical as Strict 2PL)

* Not Strict Schedule for Recoverability, as some
transaction can read or write an item that is written
by T, before T has committed. 9-15

Deadlocks in Locking
(AdIEC00a oTO KAsidwuata)

« Although Basic 2PL guarantees serializability
(correctness) by incrementally acquiring the locks

. Basic 2PL
and by releasing them at the end, s@fs'c 5,
Basic 2PL suffers from Deadlocks! V &

— The fact that it does not offer recoverability will be addressed next with Strict 2PL

T1 T2

:gzg_:?ecn‘; ?\g Deadlock (Ad31£€§080):
- | read lock (x): | Cycle of transactions waiting

read_item (X); | for locks to be released by

write_lock (X); each other.
(waits for X) write_lock (Y);

(waits for Y)

Let's see how to overcome deadlocks... 16

Dealing with Deadlocks in Locking
(Alaxeipion AdlIEcodwV aTo KAgidwua)

Deadlock Detection (Avixveuon Adi1£€600v)
In this approach, deadlocks are allowed to happen

The scheduler maintains a wait-for-graph (add edges when waiting,
drop edges when obtaining the expected lock)

If a cycle exists, then one transaction involved in the cycle is selected
(victim) and rolled-back (need to carefully select victim)

Example of Deadlock Detection:

T1: S(A)RA) S(B)

I T

T3: , — X(A)
X(B)

T4:
@ (7)) Cycle Found!
=» Deadlock

(DFS search

N O(V+E)) 5

Dealing with Deadlocks in Locking
(Alaxeipion AdlIEcodwV aTo KAgidwua)

« Starvation (AipoKTOViQ)

— Occurs when a particular transaction
consistently waits or restarted and never
gets a chance to proceed further.

* e.g., In previous example it is possible that the
same transaction may consistently be selected
as victim and rolled-back.

— This limitation is inherent in all priority based
scheduling mechanisms

* |.e., if we favor transactions with given
characteristics, other transactions might always
starve.

9-20

Two-Phase Locking Variants
(MapaAAayéc MNMpwTokOAAou KAeidwuatog Auo Pacewv)

3. Strict (AuoTtnpo 2PL):
— Stricter than the Basic algorithm (i.e., exclusive locks X-locks
are only released after commit or abort, no xact can utilize them in
its growing phase). Shared-locks (S-locks) are released earlier.

— Characteristics:
* Not Deadlock-free, Guarantees Serializability (2PL Theorem),

* Practical, in fact this is the most commonly used two-phase locking
algorithm, Leads to Strict Schedule for Recoverability, as no other
transaction can read or write an item that is written by T, unless T

has committed.

« Note that a Strict Schedule '= Serial Schedule as a Strict

Schedule allows interleaving of non-conflicting actions.
T T

Strict 2P|5 . Strict ZF:L . S(A) . IEX"_"mp&l’i: ;
%, | %, | X(B) eleasing Share
o %, | R(A) Lock earlier gives
s % o Relld S space for higher
| | 2 R(A) concurrency
) Commit then : & W(B)
Commit then C it
T Release X-locks T Release X-locks RZITBH)“
) 9-21

Two-Phase Locking Variants
(MapaAAayéc MNMpwTokOAAou KAeidwuatog Auo Pacewv)

4. Rigorous (Akping 2PL):

— Even more restrictive than Strict 2PL (i.e., exclusive
and shared locks are only released after commit or
abort), i.e., Serializability Order == Commit Order

« Deadlock-free (no Xact holds S-lock on item we might need),

« Guarantees Serializability,
« Not Practical, but used in many DBMS!

« Leads to Strict Schedule for Recoverability, as no other
transaction can read or write an item that is written by T unless

T has committed.
— Note that a Rigorous Schedule = Serial Schedule as a Rigorous

Schedule allows interleaving of non-conflictingactiogs.
Rigorous 2PL S(A)
S(A)

I X(B)
R(A)

R(A)
T CommitorabortT ICommitorabort X(B) 9-22

2| Rel(A)
Rel(B)
Commit

Growing
$3007 11V
jo Bunjunys
sQ{mkln

SY207 1V
___Jo Bunjuuys._

W(B)
W(B)

Concurrency Control in DBMSSs
(EAeyxoc TauTtoxpoviac oe 2ABA)

* We will now see another class of protocols
based on Timestamps.

 Concurrency Control with Timestamps
(without Locking)

— Timestamp Ordering (‘(EAgyxog TautoxXpoviouou pe Aiatagn
Xpovoonuwyv): Ensure serializability using the ordering of
timestamps generated by the DBMS.

— Multiversion CC (EAegyxog Tautoxpoviouou Mg MNMoAAaTTAEG
Ekdoo¢ig): Use multiple version of items to enforce serializability.

— Optimistic CC (A101660¢0¢ (OTrTIMIOTIKOG) 'EAEYyXOG
Tautoxpoviocpou): No checking done during execution of a
Transaction but post-execution validation (emmikUpwaon) enforces
serializability.

9-23

Timestamp based CC: Definitions
(EAeyxoc TauTtoxpoviag pe Xpovoonua: Opiouoi)

 Timestamp (Xpovéonuo)

— A monotonically increasing variable (integer)
Indicating the age of an operation or a transaction.

« Alarger timestamp indicates a more recent transaction
— Timestamps are assigned in our context during Xact creation.

— Using date timestamps (e.g., a long integer that represents the
number of seconds that have elapsed from 1/1/1970)

« TS1: 1237917600 (2009-03-24 18:00:00)
« TS2: 1237917610 (2009-03-24 18:00:10)

— Using a counter timestamp (e.g., using a counter stored inside
the Operating System kernel such as a semaphore)
10 sec N?W
(\ |
W]
TS1 TS2 | Time
Older Transaction Younger Transaction

9-24

Timestamp based CC: Definitions
(EAeyxoc TauTtoxpoviag pe Xpovoonua: Opiouoi)

Assume a collection of data items that are accessed, with read and
write operations, by transactions.

For each data item X the DBMS maintains the following values:

— RTS(X): The Timestamp on which object X was last read (by some
transaction T;, i.e., RTS(X):=TS(T)))

— WTS(X): The Timestamp on which object X was last written (by
some transaction T;, I.e., WTS(X):=TS(T)))

For the following algorithms we use the following assumptions:

— A data item X in the database has a RTS(X) and WTS(X) (recorded
when the object was last accessed for the given action)

— A transaction T attempts to perform some action (read or write) on
data item X on timestamp TS(T)
 Problem: We need to decide whether T has to be aborted or whether T can
continue execution. Transaction T needs to perform some

RTS(X WTS(X action (read, write) on.data item X
(X) (X) TS(T): Action(X)

—y— >

I . 9-25
TS(T) TS(T) Time

Basic Timestamp Ordering Algorithm
(Baoiko¢ AAYyOpiI0uocg Aiatagnc Xpovooruwy)

« We shall now present the first algorithm, coined Basic
Timestamp Ordering (TO), that utilizes Timestamps to
guarantee serializability of concurrent transactions.

 Timestamp Ordering (TO) Rule

— If p,(x) and g, (x) are conflicting operations, of xacts T, and T, for
item X, then p,(X) is processed before q,(x) Iff (€&=¥») ts(T,) <ts(T,)

— Main Idea: Conflicts are only allowed from older transactions (with
smaller ts) to a younger transaction T (with larger ts)

— Main ldea Example:

WTS(X) or — Note that the conflict
transaction T wi RTS(X) (D moves only to the
with smaller > .Wlth larger H right not to the left!
t|mestamp tlmeStamp \\ /‘ Time

e Theorem: If the TO rule i1s enforced Iin a schedule then
the schedule is (conflict) serializable.

« Why? Because cycles are not possible in the Conflict
Precedence Graph (I'pagoc lNpoTtepaldoTnTac 2UyKpOoUoEWV)!

0-26

Basic Timestamp Ordering Algorithm
(Baoikoc AAYyopiBuocg Aiatagnc Xpovoouwy)

« Basic Timestamp Ordering (TO) Algorithm

Case 1 (Read X by T): Transaction T issues a read(X) operation
A. If TS(T) < WTS(X), then read(X) is rejected (as the TO rule is violated).

T has to abort and be rejected. _ Happens if T started
TS(T): Read(X) WTS(X) Rej ectT earlier than T’ (that

ey (TO rule violated) wrote X) ... see
W 2 S example on slide 16.9

’
~, Pid
~ X -

. IfWTS(X) < TS(T), then execute read(X) of T and update RTS(X).

R/R not confllctlng action so WTS(X) TS(T): Read(X)

RTS(X) ? TS(T) not investigated # Accept T (TO ok)
Sa A 4 Time

< >

Case 2 (Write X by T): Transaction T issues a write(X) operation
A. If TS(T) < RTS(X) orif TS(T) < WTS(X), then write is rejected.

TS(T): Write(X) RTS(X) TS(T): Write(X) WTS(X)

‘v—.} _‘v_‘_> Reject T (TO rule violated)
X Time Time

’
~. ~. -
‘~ P

B. f RTS(X) < TS(T) or WTS(X) < TS(T), then execute write(X) of T and
update WTS(X)

RTS(X) TS(T): Write(X) WTS(X) TS(T): Write(X)

Accept T (TO ok
.‘ ~~~~~~~~ ’ .Time ﬁrime P () 9-28

Basic TO Algorithm Example

(Mapadeiypa Baolkdg AAYyopiOuoc Aiatagng Xpovoouwy)

« Consider the following scenario:
— Two transactions T1 and T2
— Initially RTS=0 and WTS=0 for data items X, Y
— Timestamps are as follows: TS(T1)=10 and TS(T2)=20

T1(10)
1. Al = Read(X)
2.A1=A1-Kk
3. Write(X, Al)
4. A2 = Read(Y)
5.A2=A2 +Kk
6. Write(Y, A2)

T2(20)
1. Al = Read(X)
2.A1=A1*1.01
3. Write(X, Al)
4. A2 = Read(Y)
5.A2=A2*1.01
6. Write(Y, A2)

9-29

Basic TO Algorithm Example

(Mapadeiypa Baolkdg AAYyopIOuoc Aiatagng Xpovoaoruwy)

Is the schedule serializable?

— Utilize the Basic TO Algorithm to justify your answer (otherwise the
precedence graph could have be used to answer this question)

T1(10 T2(20
RTS(X): 10 1. A1 = Read(X)

WTS(X) : 10
RTS(Y): O
WTS(Y): 0 3

WTS(X) TS(T): Read(X)

......... Time

\ Al =Read(X) RTS(X): 20

Al = Al1* 1.01 ‘F’QVTTSS(%) 2
Write(X, Al) WTS(Y): 0
RTS((X))i 20 4. A2 =Read(Y) wrs) | [Tsm;: write(
WTS(X) : 20 _

RTS(Y) : 10 5. A2=A2 +k \ o @

wTts(y): 10 6. Write(Y, A2)

2. Al1=Al1-Kk
. Write(X, Al)

W

4. A2 =Read(Y) RTS(X): 20

Yes! The schedule is serializable! 5 A2=A2*101 WTS(X):20
This can be confirmed by the 6. Write(Y, A2) \F/*VTTSS((YY)):: o

precedence graph which is acyclic 9-30

Basic TO Algorithm Example

(Mapadeiypa Baolkdg AAYyopIOuoc Aiatagng Xpovoaoruwy)

 |s the schedule serializable?

— Utilize the Basic TO Algorithm to justify your answer

T1(10) T2(20)

RTS(X): 10 1. Al = Read(X)

WTS(X) : 10 _ A1

RTS(Y): O 2. Al. Al -k WTS(X)_| [TS(T): Read(X)

WTS(Y): 0 3. Write(X, Al) %
. Al=Read(X) Tme

1
The Basic TO 2 Al =A1*1.01 | wrse || s writex)
algorithm only 3. :
?”ISUVS_?_t 4. A2 = Read(Y) RTS(X) .
serializability. _ :
y 5. A2=A2*1.01 | 15 20
6. Write(Y, A2) RTS(Y) : 20

Recoverability is 4 % _ WTS(Y) : 20

_ _ . A2 = Read(Y)
discussedintheg a5 _ a0 4|

TS(T1)=10 L= Reject T1 (TO rule violated)
(Restart with new TS)

context of ths :
. 6. Write(Y, A2
Strict TO. (Y. A2) —r——@—>- ..

~ e
S -7

NO! The schedule is NOT serializable

- this is confirmed with the precedence graph which is cyclic 9-31

Advantages/Disadvantages of Basic TO
(MAeovek./Melovek. Tou Baoikou AAy. Aiart. Xpov.)

e Basic TO Remark

— Note that there is no notion of RR-conflict
If TS(T) < RTS(X), then execute read(X) of T and update RTS(X).

TS(T): Read(X) RTS(X) Accept T

—H—}Time (TO rule NOT violated)

-,
\\\ "
\\\\\

« Advantages of Basic TO Algorithm
— Schedules are serializable (like 2PL protocols)
— No waiting for transaction, thus, no deadlocks!

« Disadvantages
— Schedule may not be recoverable (read uncomit. data)
« Solution: Utilize Strict TO Algorithm (see next)

— Starvation is possible (if the same transaction is
continually aborted and restarted)
» Solution: Assign new timestamp for aborted transaction

9-32

Strict Timestamp Ordering
(AuoTnpog AAyopIBuocg Alatagng Xpovoonuwy)

« The Basic T.0. algorithm guarantees serializability but not
recoverability (ETTava@EPCINOTNTAO)

« The Strict T.O. algorithms introduces recoverability.
— (Revision) Strict Schedule: A transaction can neither read or write
an uncommitted data item X.
« Strict T.O. Main ldea: Extend the Accept cases of the
Basic T.O. algorithm by adding the requirement that a
commit occurs before T proceeds with its operation. i.e.,

|
For read () WTS(X) : TS(T): Read(X)

WTSX) < TS(T) ety ACCEPLT (TO 0K)
o v Ti .

- M Remove Dirty Reads
commit

For write()
RTS(X) < TS(T) or WTS(X) <TS(T) :
i

RTS(X) ' TS(T): Write(X) WTS(X) gyl TS(T): Write(X)

Remove . | . 5 Accept T (TO ok)
Time 9-33

Unrepeatable reads L effiove Lost updates

