
7-1
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

EPL646 – Advanced Topics in Databases

Lecture 7

Evaluation of Relational Operators

(Joins) and Query Optimization

 Chapter 14.4: Ramakrishnan & Gehrke

Chapter 15: Ramakrishnan & Gehrke (* exclude 15.5 and 15.7)

Demetris Zeinalipour

http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

Department of Computer Science

University of Cyprus

http://www2.cs.ucy.ac.cy/~dzeina/

7-2
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Lecture Outline
 Evaluation of Relational Operators

• 14.4) Algorithms for Evaluating Joins

– Simple Nested Loops Join (SNLJ)

– Block-Nested Loop Join (BNLJ)

– Index-Nested Loops Join (INLJ)

– Sort-Merge Join (SNLJ)

• 15) Query Optimization & Blocks:
– Enumeration of Alternative Plans

(Απαρίθμηση Εναλλακτικών Πλάνων)

– Cost Estimation of Plans
 (Υπολογισμός Κόστους με Εκτέλεσης
Πλάνων)

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Enumerate Cross

Product

Use Existing Index

Partition the Data to

avoid Enumerating

the Cross Product

7-3
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Introduction to Join Evaluation
(Εισαγωγή στην Αποτίμηση του Τελεστή Συνένωσης)

• The JOIN operator () combines records from two

tables in a database, creating a set that can be

materialized (saved as an intermediate table) or used on-

the-fly (we shall only consider the latter case)

• It is among the most common operators, thus must be

optimized carefully.

• We know that RS  σc(RS), yet R and S might be

large so RS followed by a selection is inefficient!

• Our objective is to implement the join without enumerating

the underlying cross-product.

7-5
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Schema for Examples
(Σχήμα για Παραδείγματα)

• Notation:

– M tuples in R (Reserves), pR tuples per page,

• M=1000 pages, pR=100 tuples/page => 100K tuples

– N tuples in S (Sailors), pS tuples per page.

• N=500 pages, ps=80 tuples/page => 40K tuples

Reserves (sid: integer, bid: integer, day: dates, rname: string)

Sailors (sid: integer, sname: string, rating: integer, age: real)

• Query: SELECT * FROM Reserves R1, Sailors S1

 WHERE R1.sid=S1.sid

• Cost metric: # of I/Os.

• We will ignore output costs (as always) as the results are

sent to the user on-the-fly

7-6
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Rule: The outer relation should be the smaller of the two relations

(recall than RS  SR, i.e., Commutative (Αντιμεταθετική))

Simple Nested Loops Join
 (Απλή Συνένωση Εμφωλευμένων Βρόγχων)

• A) Tuple-at-a-time Nested Loops join (TNLJ): Scan outer

relation R, and for each tuple r ∈ R, we scan the entire inner

relation S a tuple-at-a-time.

– Cost: M + (pR*M) * N = 1000 + 100*1000*500 =50,001,000 ~50M I/Os

• B) Page-at-a-time Nested Loops join: Scan outer relation R,

and for each page ∈ R, scan the entire inner relation S a

page-at-a-time (TNLJ: no caching of retrieved S page)

– Cost: M + M*N = 1000 + 1000*500 =501,000 I/Os

– If smaller relation (S) is outer, cost = 500 + 500*1000 = 500,500 I/Os

foreach tuple r in R do

 foreach tuple s in S do

 if ri == sj then add <r, s> to result

// Outer relation

// Inner relation

Cost: M + M*N

Cost: M + pR*M*N

SNLJ

BNLJ

INLJ

SMJ

Times scanning S

Times scanning R

7-7
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Block Nested Loops Join
(Συνένωση Εμφωλευμένων Βρόγχων με χρήση Μπλόκ)

• Problem: SNLJ algorithm does not effectively utilize buffer

pages (i.e., it uses 3 Buffer pages BR, BS and Bout).

• Idea: Load the smaller relation in memory (if it fits, its ideal!)

• C) Block-Nested Loops Join (Case I)

– Load the complete smaller R relation to memory (assuming it fits)

– Use one page as an output buffer

– Use remaining pages (even 1 page is adequate) to load the larger S

in memory and perform the join.

. . .

. . .

R & S

R (complete)

Input buffer for S Output buffer

. . .

Join Result

Cost: M+N

SNLJ

BNLJ

INLJ

SMJ

7-8
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Block Nested Loops Join
(Συνένωση Εμφωλευμένων Βρόγχων με χρήση Μπλόκ)

• Problem: BNLJ spends time to join the results in memory

• Idea: Build an In-Memory Hash Table for R (such that the in-

memory matching is conducted in O(1) time)

• C) Block-Nested Loops Join (Case II)

– Load the complete smaller R relation to memory and Build a Hashtable

– Use one page as an output buffer

– Use remaining pages (even 1 page is adequate) to load the larger S

in memory and perform the join (by using the in-memory Hashtable).

. . .

. . .

R & S
Hash table for block of R

Input buffer for S Output buffer

. . .

Join Result

Like previously,

Cost: M+N
(But CPU cost is lower)

SNLJ

BNLJ

INLJ

SMJ

7-9
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Block Nested Loops Join
(Συνένωση Εμφωλευμένων Βρόγχων με χρήση Μπλόκ)

• Problem: What if smaller relation can’t fit in buffer?

• Idea: Use the previous idea but break the relation R into

blocks (of size B-2) that can fit into the buffer.

• C) Block-Nested Loops Join (Case III)

– Scan B-2 pages of smaller R to memory (named R-block)

(additionally, could build a hash table for this in-memory table)

– Use 1 page as an output buffer and 1 page to scan S relation to

memory a page-at-a-time (named S-page) and perform the join.

– Need to repeat the above ⌈M/(B-2)⌉ times (i.e., Number of Rblocks)

. . .

. . .

R & S

Rblock:B-2 Pages of R

Input buffer for S

SBlock

Output buffer

. . .

Join Result

Cost: M + N * ⌈M/(B-2)⌉

SNLJ

BNLJ

INLJ

SMJ

7-10
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Examples of Block Nested Loops
(Παράδειγμα Εμφωλευμένων Βρόγχων με χρήση Μπλόκ)

• Let us consider an Example with BNLJ (case III),

which has a cost of: M + N * ⌈M/(B-2)⌉

• Let us consider various scenarios:

– Reserves (R) bigger as outer and B=102

• Cost = 1000 + 500 * ⌈1000/100 ⌉ = 1000 + 500*10 = 6000 I/Os

– Reserves (R) bigger as outer and B=92

• Cost =1000 + 500 * ⌈1000/90 ⌉ = 1000 + 500*12 = 7000 I/Os

– Sailors (S) smaller as outer and B=102

• Cost =500 + 1000 * ⌈500/100 ⌉ = 500 + 1000*5 = 5500 I/Os

– Sailors (S) smaller as outer and B=92

• Cost =500 + 1000 * ⌈500/90 ⌉ = 500 + 1000*6 = 6500 I/Os

• It might be best to divide buffers evenly between R and

S (instead of allocating B-2 to one of the two relations)

– Seek time can be reduced (data can be transferred sequentially

to memory instead of 1 page-at-a-time for the S-page)

SNLJ

BNLJ

INLJ

SMJ

Less Buffers

=> More I/O

Bigger Outer

=> More IO

7-11
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Index Nested Loops Join
(Συνένωση Εμφωλευμένων Βρόγχων μέσω Ευρετηρίου)

• Problem: Previous approaches essentially enumerate the

RS set and do not exploit any existing indexes.

• Idea: If there is an index on the join column of one relation

(say S), why not make it the inner and exploit the index.

• d) Index-Nested Loops Join

– Scan outer relation R (page-at-a-time), for each tuple r ∈ R, we use

the available index to retrieve the matching tuples of S.

– Cost: M + (pR* M* Index_Cost)
• Index_Cost = Probing_Cost + Retrieval_Cost

– Probing_Cost: Depends on Index Type

• Hash Index: ~1.2 I/Os B+Tree Index: 2-3 I/Os

– Retrieval_Cost: Depends on Clustering

• Clustered (Altern. 2): 1 I/O (typical) Clustered (Altern. 1): 0 I/Os

• Unclustered (Altern. 2): upto 1I/O per matching S tuple.

SNLJ

BNLJ

INLJ

SMJ

7-12
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Examples of Index Nested Loops
 (Παράδειγμα Εμφωλευμένων Βρόγχων με χρήση Ευρετηρίου)

• Let us consider an Example with INLJ which has a cost:

 M + (pR* M* Index_Cost)

• Hash-index (Alt. 2) on sid of Sailors (as inner):

– Cost = 1000 + 100 * 1000 * (1.2 + 1.0) = 220,000 I/Os

– Retrieval_Cost: 1.2 I/Os to get data entry in index, plus 1.0 I/O to

get (the exactly one, as sid is sailor’s key) matching Sailors tuple.

– Note: Better than Simple (Page-at-a-time) Nested Loops join: M +

M* N, which was 500,500 I/Os!

– Not comparing with BNLJ as the performance of the latter depends

on the buffer size (shall compare BNLJ with SMJ later).

• Hash-index (Alt. 1) on sid of Sailors (as inner):

• Cost = 1000 + 100 * 1000 * (1.2 + 0.0) = 120,000 I/Os

Use Index on S foreach tuple r in R do

 foreach tuple s in S where ri == sj do

 add <r, s> to result

SNLJ

BNLJ

INLJ

SMJ

7-14
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Sort-Merge Join

(Σύζευξη με Ταξινόμηση και Συγχώνευση)

• Another method, like Index-Nested Loop Join, which

avoids enumerating the RS set.

• Sort-Merge Join utilizes a partition-based approach to

join two relations (works only for equality joins)

e) Sort Merge Join Algorithm:

– Sort Phase: Sort both relations R and S on the join attribute

using an external sort algorithm.

– Merge Phase: Look for qualifying tuples r ∈ R and s ∈ S by

merging the two relations.

• Sounds similar to external sorting. In fact the Sorting

phase of the sort alg. can be combined with the sorting

phase of SMJ (we will see this next)

SNLJ

BNLJ

INLJ

SMJ

7-15
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Sort-Merge Join

(Σύζευξη με Ταξινόμηση και Συγχώνευση)

• Sort-Merge Join I/O Cost

= ExternalSort(R) + ExternalSort(S) + M + N

=2M*#passes + 2N*#passes + M + N

=

• Asymptotically, the I/O cost for SMJ is :

 (however we will utilize the real cost in our equations)

• See next slide for examples…

      NMBNNBMM BB  )/log1(2)/log1(2 11

)loglog()()log()log(NNMMONMONNOMMO 

merge

SNLJ

BNLJ

INLJ

SMJ

7-16
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Sort-Merge Join

(Σύζευξη με Ταξινόμηση και Συγχώνευση)

• Let us consider an Example with SMJ, which has a

cost of:

• Let us consider various scenarios:

– Buffer B=35, M=1000, N=500

• Cost = 2*1000*2 + 2*500*2 + 1000 + 500 = 7500 I/Os
– Note:

• Block-Nested Loops Join: N + M*⌈N/(B-2)⌉ =500+1000*⌈500/33⌉ =16,500 I/Os

– Buffer B=100, M=1000, N=500

• Cost = 2*1000*2 + 2*500*2 + 1000 + 500 = 7500 I/Os

• Similar to the Block-Nested Loops Join: N + M*⌈N/(B-2)⌉= 6500 I/Os

– Buffer B=300, M=1000, N=500

• Cost = 2*1000*2 + 2*500*2 + 1000 + 500 = 7500 I/Os

• Block-Nested Loops Join: M + N*⌈M/(B-2)⌉=500+1000*⌈500/300⌉ = 2,500 I/Os

      NMBNNBMM BB  )/log1(2)/log1(2 11

        273.0135/1000log1/log1 341   BMB

* The number of passes during sorting remains at 2 in the above examples

SNLJ

BNLJ

INLJ

SMJ

SMJ not

better with

larger buffer

(i.e., Number

of passes

won’t drop

below 2)

7-29
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Lecture Outline
 Relational Query Optimizer

• Introduction to Relational Query Optimization
(Σχεσιακή Βελτιστοποίηση Επερωτήσεων)

• Query Blocks: Units of Optimization
(Μπλοκ Επερώτησης: Η Βασική μονάδα
βελτιστοποίησης)

• Enumeration of Alternative Plans
(Απαρίθμηση Εναλλακτικών Πλάνων)

• Cost Estimation of Plans
 (Υπολογισμός Κόστους με Εκτέλεσης Πλάνων)

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

7-30
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Relational Query Optimization
(Σχεσιακή Βελτιστοποίηση Επερωτήσεων)

• A user of a DBMS formulates SQL queries.

• The query optimizer translates this query into an

equivalent Relational Algebra (RA) query, i.e. a RA

query with the same result.

• Τo optimize the efficiency of query processing, the query

optimizer reorders the individual operations (τελεστές)

within the RA query.

• Re-ordering has to preserve the query semantics

(σημασιολογία) and is based on Rel. Algebra

equivalences, e.g., some random examples:

– (R  S) ≡ (S  R) (Commutative, Αντιμετάθεση)

– σA1  … An (R) ≡ σA1 (… σAn (R)) (Cascade Conditions, Διάδοση)

– σA1(σA2(R)) ≡ σA2(σA1(R)) (Commutative, Αντιμετάθεση)

7-38
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Query Blocks: Units of Optimization
(Μπλοκ Επερώτησης: Η Βασική μονάδα βελτιστοποίησης)

• An SQL query is parsed into a

collection of query blocks (μπλοκ

επερωτήσεων), and these are

optimized one block-at-a-time.

• Nested blocks are usually treated

as calls to a subroutine, made once

per outer tuple.

SELECT S.sname

FROM Sailors S

WHERE S.age IN

 (SELECT MAX (S2.age)

 FROM Sailors S2

 GROUP BY S2.rating)

Nested block
(εμφωλευμένο

μπλοκ)

Outer block
(Εξωτερικό

Μπλοκ)

• For each block, the plans considered are:

– All available access methods, for each relation in the FROM clause.

– All possible join trees for the relations in the FROM clause.

• We shall the above in further details in the following slides…

SQL=>RA

Enum. Plans

Est. Cost

7-41
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Query Blocks: Units of Optimization
(Μπλοκ Επερώτησης: Η Βασική μονάδα βελτιστοποίησης)

• A query is treated as a σ-π- algebra expression

with the remaining operations (if any) carried out on

the result.

• For our example, the optimizer only considers:

• Aggregates, Having, Group-By are calculated after

computing the σ-π- of a query.

• Now the Optimizer needs to i) enumerate the

alternative plans and ii) estimate cost of each plan.

Relational Algebra Block (will be considered for evaluation):

SQL=>RA

Enum. Plans

Est. Cost

7-44
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Enumeration of Alternative Plans
(Απαρίθμηση Εναλλακτικών Πλάνων)

• Problem: The space of alternative plans for a given query is

very large!

• To motivate the discussion consider the binary query

evaluation plans and assume that only 1 join alg. exists.

• Question: How many such plans can we have?

• Answer: Number of Binary Trees with n nodes:
– N=4 we have 336 possible trees

– N=5 we have 1008 possible trees

– ….

– N=10 we have 6 x 1010 possible trees

B A

C

D

B A

C

D

C D B A

)!1(

)!2(




n

n
Cn

SQL=>RA

Enum. Plans

Est. Cost

Number of

Binary Plans:

We certainly need to prune (κλαδέψουμε) the search space!

7-45
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Enumeration of Alternative Plans
(Απαρίθμηση Εναλλακτικών Πλάνων)

• The Query Optimizer therefore focuses on a

subset of plans.

SQL=>RA

Enum. Plans

Est. Cost

• Algebraic plans: those that can be

expressed with Relational Algebra operators

σ-π-

• Enumerable plans: e.g., only binary

plans.

• Searched plans: Among binary plans only

consider the left-deep plans, i.e., where

right child of each join is a leaf (base

relation)

• Constructed plans: Those that are

actually constructed.

Focus of the Query Optimizer

7-46
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Enumeration of Alternative Plans
(Απαρίθμηση Εναλλακτικών Πλάνων)

• Left-deep (αριστεροβαθή) join trees:
– Α left-deep tree is a tree in which the right child of each join is a leaf

(i.e., a base table or index).

– Left-deep trees allow us to generate all fully pipelined plans

(πλήρως σωληνωμένα πλάνα εκτέλεσης) .

• As results are generated these are forwarded to the

operator higher in the tree hierarchy.

• Intermediate results not written to temporary files.

• ΝΟΤ all left-deep trees are fully pipelined (e.g., SM

join, no results are generated during sorting but only

during merging).

B A

C

D

SQL=>RA

Enum. Plans

Est. Cost

7-47
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Enumeration of Alternative Plans
(Απαρίθμηση Εναλλακτικών Πλάνων)

• Even by only considering left-deep plans, the number of

plans still grows rapidly when number of join increases!

• In particular, we have N! possible plans, where N the number

of base relations participating in a join.
– With N=4, we have 24 possible plans

– With N=5, we have 120 possible plans

– With N=6, we have 720 possible plans

– ….

– With N=10, we have 3628800 possible plans

B A

C

D

Number of

Left-Deep

Plans*: N!

A B

C

D

C B

A

D

...

SQL=>RA

Enum. Plans

Est. Cost

* Again assuming that only 1 join algorithm exists

Optimizers rely

on System-R's

dynamic

programming

approach to

reduce the

search space

7-51
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Cost Estimation of Plans
 (Υπολογισμός Κόστους με Εκτέλεσης Πλάνων)

• Consider a Query Block:

• Maximum # tuples in result is the product of the cardinalities of

relations in the FROM clause.

– i.e., |A|*|B|* … * |Z|

• Reduction factor (RF) (Συντελεστής Μείωσης): defines the

ratio of the expected result size / input size

– e.g., term1 yields 200 expected answers out of 1000 => RFterm1=0.2

• How can a DBMS know these RFs for a table

without spending too much time? (next slide)

SELECT attribute list

FROM A, B, …, Z

WHERE term1 AND ... AND termz

SQL=>RA

Enum. Plans

Est. Cost

7-52
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Reduction Factors Using Histograms
(Συντελεστές Μείωσης με Ιστογράμματα)

• Wrong Answer: Scan the table => Too

Expensive

• Correct Answer: Utilize Histograms (tiny data

structures that approximate the real distribution

of values in a table (stored in system catalog)

• Example

Initial Distribution of “age”

F
re

q
u

e
n

c
y
 o

f
A

p
p

e
a

ra
n
c
e

Equiwidth Histogram Equidepth Histogram

SQL=>RA

Enum. Plans

Est. Cost

