Department of Computer Science
University of Cyprus

EPL646 — Advanced Topics in Databases

Lecture 7/

Evaluation of Relational Operators
(Joins) and Query Optimization

Chapter 14.4: Ramakrishnan & Gehrke
Chapter 15: Ramakrishnan & Gehrke (* exclude 15.5 and 15.7)

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

7-1

http://www2.cs.ucy.ac.cy/~dzeina/

Lecture Outline
Evaluation of Relational Operators

« 14.4) Algorithms for Evaluating Joins
— Simple Nested Loops Join (SNLJ)I Enumerate Cross
— Block-Nested Loop Join (BNLJ) Product

— Sort-Merge Join (SNLJ) Partition the Data to

* 15) Query Optimization & Blocks: avoid Enumerating

— Enumeration of Alternative Plans the Cross Product
(ATTapiBunon EvaAAlakTikwy MAGvwv)

— Cost Estimation of Plans
(YTroAoyiouog Kootoucg pe EKTEAEONC
[TAGvVWV)

I

Introduction to Join Evaluation
(Elcaywyn otnv ATToTiunon tou TeAeOT ZUvEVWONG)

The JOIN operator (®) combines records from two
tables in a database, creating a set that can be
materialized (saved as an intermediate table) or used on-
the-fly (we shall only consider the latter case)

It is among the most common operators, thus must be
optimized carefully.

We know that R®S < o.(RxS), yet R and S might be
large so RxS followed by a selection is inefficient!

Our objective is to implement the join without enumerating
the underlying cross-product.

7-3

Schema for Examples
(2xNua yia Napadeiypara)
Notation:
— M tuples in R (Reserves), pk tuples per page,
* M=1000 pages, pg=100 tuples/page => 100K tuples
— N tuples in S (Sailors), ps tuples per page.
* N=500 pages, p,=80 tuples/page => 40K tuples

Reserves (sid: integer, bid: integer, day: dates, rname: string)
Sailors (sid: integer, sname: string, rating: integer, age: real)

Query: SELECT * FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

Cost metric: # of I/0Os.

We will ignore output costs (as always) as the results are

sent to the user on-the-fly
7-5

SNLJ

e Simple Nested Loops Join

INLJ

smi (ATTAN ZuvEvwan EpewAsupévwy Bpoyxwv)

foreach tuple r in R do /I Outer relation
foreach tuple s in S do //Inner relation
If ri == s; then add <r, s> to result

| A) Tuple-at-a-time Nested Loops join (TNLJ): Scan outer
relation R, and for each tuple r € R, we scan the entire inner
relation S Weﬁﬁ%ﬁﬁ?ﬁémgs Cost: M + pg*M*N
- Cost: M% (pg*M)* N = 1000 + 100*1000*500 =50,001,000 ~50M I/Os

| B) Page-at-a-time Nested Loops join: Scan outer relation R,
and for each page € R, scan the entire inner relation S a
page-at-a-time (TNLJ: no caching of retrieved S page)
~ Cost: M+ M#*N = 1000 + 1000*500 =501,000 I/0s Cost: M + M*N
- If smaller relation (S) is outer, cost = 500 + 500*1000 = 500,500 I/Os

Rule: The outer relation should be the smaller of the two relations

7-6
(recall than R®S < S®R, i.e., Commutative (AVTIMETABETIKN))

SNLJ
BNLJ
INLJ

Block Nested Loops Join
SMJ (Zuveévwaon EpewAsupévwyv Bpoyxwy pe xprion MTTAoK)

 Problem: SNLJ algorithm does not effectively utilize buffer
pages (i.e., it uses 3 Buffer pages By, Bg and B,,).

- ldea: Load the smaller relation in memory (if it fits, its ideal!)
| C) Block-Nested Loops Join (Case |)

— Load the complete smaller R relation to memory (assuming it fits)

— Use one page as an output buffer

— Use remaining pages (even 1 page is adequate) to load the larger S
INn memory and perform the join.

R&S

R (complete)

v. A

Join Result

7

Input buffer for S Output buffer

Cost: M+N

7-7

SNLJ

v Block Nested Loops Join

INLJ
SMJ (Zuveévwaon EpewAsupévwyv Bpoyxwy pe xprion MTTAoK)

 Problem: BNLJ spends time to join the results in memory

« ldea: Build an In-Memory Hash Table for R (such that the In-
memory matching is conducted in O(1) time)

| C) Block-Nested Loops Join (Case II)
— Load the complete smaller R relation to memory and Build a Hashtable

— Use one page as an output buffer

— Use remaining pages (even 1 page is adequate) to load the larger S
In memory and perform the join (by using the in-memory Hashtable).

R &S Join Result
Hash table for block of R

Like previously,

. — 1 Cost: M+N

% (But CPU cost is lower)

7-8

Input buffer for S Output buffer

SNLJ
BNLJ
INLJ

Block Nested Loops Join
SMJ (Zuveévwaon EpewAsupévwyv Bpoyxwy pe xprion MTTAoK)

* Problem: What if smaller relation can’t fit in buffer?

« ldea: Use the previous idea but break the relation R into
blocks (of size B-2) that can fit into the buffer.

| C) Block-Nested Loops Join (Case lll)
— Scan B-2 pages of smaller R to memory (named R-block)

(additionally, could build a hash table for this in-memory table)

— Use 1 page as an output buffer and 1 page to scan S relation to

memory a page-at-a-time (named S-page) and perform the join.

— Need to repeat the above [M/(B-2)] times (i.e., Number of Rblocks)

R&S

N

Rblock:B-2 Pages of R

SO0 -

-

CGHL|

Input buffer for S Output buffe

Join Result

-

OOOOOO

(E EEEO

foreach block of B — 2 pages of R do
foreach page of S do {
for all matching in-memory tuples r € R-block and s € S-page,
add (r,s) to result

)
Cost: M+ N * [M/(B-2)] 79

SNLJ

s Examples of Block Nested Loops

INLJ
smI(Mapddeiyua EppwAcupévwv Bpdyxwyv pe xprion MTTAOK)

 Let us consider an Example with BNLJ (case Ill),
which has a cost of: M + N * [M/(B-2)]

 Let us consider various scenarios:

— Reserves (R) bigger as outer and B=102
. Cost = 1000 + 500 * [1000/100] = 1000 + 500*10 = 6000 I/0s — Less Buffers

— Reserves (R) bigger as outer and B=92 => More I/O
+ Cost =1000 + 500 * [1000/90 | = 1000 + 50012 = 7000 I/Os

— Sailors (S) smaller as outer and B=102 Bigger Outer
« Cost =500 + 1000 * [500/100] = 500 + 1000*5 = 5500 1/0s —~ == More |0

— Sailors (S) smaller as outer and B=92
« Cost =500 + 1000 * [500/90 1 = 500 + 1000*6 = 6500 I/Os
It might be best to divide buffers evenly between R and
S (instead of allocating B-2 to one of the two relations)

— Seek time can be reduced (data can be transferred sequentially
to memory instead of 1 page-at-a-time for the S-page) 7-10

SNLJ

= ndex Nested Loops Join

INLJ
sMJ (ZuvEvwon EpewAsuuévwy Bpoyxwyv néow Eupetnpiou)

 Problem: Previous approaches essentially enumerate the
RxS set and do not exploit any existing indexes.

« ldea: If there is an index on the join column of one relation
(say S), why not make it the inner and exploit the index.

. d) Index-Nested Loops Join

— Scan outer relation R (page-at-a-time), for each tuple r € R, we use
the available index to retrieve the matching tuples of S.

- Cost: M+ (pr* M* Index_Cost)

*/ Index_Cost = Probing_Cost + Retrieval Cost
— Probing_Cost: Depends on Index Type
 Hash Index: ~1.2 1/Os B+Tree Index: 2-3 1/0Os

— Retrieval Cost: Depends on Clustering
» Clustered (Altern. 2): 1 1/O (typical) Clustered (Altern. 1): 0 I/Os

* Unclustered (Altern. 2): upto 11/0O per matching S tuple. -

SNLJ

BNLJ
INLJ

SMJ

Examples of Index Nested Loops

(Mapadeiyua EppwAcupévwv Bpoyxwyv pe xpron Eupetnpiou)

foreach tuple r in R do __~Use Index on S
foreach tuple s in S where ri ==s; do
add <r, s> to result

* Let us consider an Example with INLJ which has a cost:
M+ (pr* M* Index_Cost)
« Hash-index (Alt. 2) on sid of Sailors (as inner):

Cost =1000 + 100 * 1000 * (1.2 + 1.0) = 220,000 I/Os

Retrieval Cost: 1.2 1/Os to get data entry in index, plus 1.0 I/O to
get (the exactly one, as sid is sailor’s key) matching Sailors tuple.

Note: Better than Simple (Page-at-a-time) Nested Loops join: M +
M* N, which was 500,500 I/Os!

Not comparing with BNLJ as the performance of the latter depends
on the buffer size (shall compare BNLJ with SMJ later).

- Hash-index (Alt. 1) on sid of Sailors (as inner):

Cost =1000 + 100 * 1000 * (1.2 + 0.0) = 120,000 I/Os 7-12

SNLJ

BNLJ Sort-Merge Join

INLJ

smMy (2U0leugn pe Tagivounon Kal 2uyxXwveuon)

« Another method, like Index-Nested Loop Join, which
avoids enumerating the RxS set.

« Sort-Merge Join utilizes a partition-based approach to
join two relations (works only for equality joins)

e) Sort Merge Join Algorithm:

— Sort Phase: Sort both relations R and S on the join attribute
using an external sort algorithm.

— Merge Phase: Look for qualifying tuplesre Rand s € S by
merging the two relations.

e Sounds similar to external sorting. In fact the Sorting

phase of the sort alg. can be combined with the sorting
phase of SMJ (we will see this next)

7-14

SNLJ

BNLJ Sort-Merge Join

INLJ

smMy (2U0leugn pe Tagivounon Kal 2uyxXwveuon)

« Sort-Merge Join I/O Cost (meﬁge\
= ExternalSort(R) + ExternalSort(S) + M + N

=2M*#passes + 2N*#passes + M + N
—2M (1 +|logg .| M /B [)+2N@+[logs .| N/B|)+M +N

« Asymptotically, the 1/O cost for SMJ is :
=0O(M logM)+O(NlogN)+O(M +N) e O(M logM + N log N)

(however we will utilize the real cost in our equations)

« See next slide for examples...

7-15

SNLJ

BNLJ Sort-Merge Join

INLJ

smMy (2U0leugn pe Tagivounon Kal 2uyxXwveuon)

 Let us consider an Example with SMJ, which has a
cost of: 2M(1+|log, ,|M /B [)+2N(1+|log, [N/B|[)+M +N

 Let us consider various scenarios:

— Buffer B=35, M=1000, N=500
« Cost =2*1000*2 + 2*500*2 + 1000 + 500 = 7500 I/Os
<M ndk — Note: 1+[log, ,[M/B||=1+[log,,[1000/35]|=1+]0.73]=2
better with » Block-Nested Loops Join: N + M*[N/(B-2)] =500+1000*[500/33] =16,500 I/Os

| b
(o Numpe— Buffer B=100, M=1000, N=500
of passgs « Cost = 2*1000*2 + 2*500*2 + 1000 + 500 = 7500 1/Os

won'’t drgp

below 2) Similar to the Block-Nested Loops Join: N + M*[N/(B-2)]= 6500 1/Os
— Buffer B=300, M=1000, N=500
e« Cost =2*1000*2 + 2*500*2 + 1000 + 500 = 7500 I/Os
» Block-Nested Loops Join: M + N*[M/(B-2)]=500+1000*[500/300] = 2,500 1/Os

* The number of passes during sorting remains at 2 in the above examples
7-16

Lecture Outline
Relational Query Optimizer

Introduction to Relational Query Optimization
(2xeolakn BeAtiototroinon ETTepwtoewy)

Query Blocks: Units of Optimization
(MtrAok Emrepwrnong: H Baoikn povaog =
BeATiOTOTTOINONG)

Enumeration of Alternative Plans
(AtTapiOunon EvaAAakTikwy MNMAGvwy)

Cost Estimation of Plans
(YTroAoyiopocg KooTtoug pe EkTéEAeoncg MNMAGvwy)

7-29

Relational Query Optimization
(2xeoiakn BeATioTotroinon ETTepwTtnocwy)

A user of a DBMS formulates SQL queries.

The query optimizer translates this query into an
equivalent Relational Algebra (RA) query, i.e. a RA
guery with the same result.

To optimize the efficiency of query processing, the query
optimizer reorders the individual operations (TeAe0TEG)
within the RA query.

Re-ordering has to preserve the query semantics
(onuaaoioAoyia) and is based on Rel. Algebra
equivalences, e.g., some random examples:

— (R®S) = (S ® R) (Commutative, Avtipetadeon)

— Opa1r . an (R) =0, (... a4, (R)) (Cascade Conditions, Ai¢gdoon)

— 0,41(04,(R)) = 04,(0,1(R)) (Commutative, AvTiyeTaBeON) 7-30

SQL=>RA

= renQUErY Blocks: Units of Optimization

Est. Cost (MtrAok ETrepwtnong: H Baoikny povada BeATioToTroinang)

- | An SQL query is parsed into a 2&16?\? S-sname
: Sailors S
CO||eCtIOI’,1 of query 2 Iohcks (UTTAOK WHERE S.age IN
emepwrnoswy), and these are (SELECT MAX (S2.age)
optimized one block-at-a-time. FROM Sailors S2 \
)

GROUP BY S2.rating

 Nested blocks are usually treated

as calls to a subroutine, made once | Outer block (Ziffeifgfo
(E¢wtepixo
per outer tuple. Mhox) Hhox)

* For each block, the plans considered are:
— All available access methods, for each relation in the FROM clause.
— All possible join trees for the relations in the FROM clause.

* We shall the above in further details in the following slides...

7-38

se-ra Query Blocks: Units of Optimization

Est. Cost (MTTAoK ETrepwTtnoNngG: H Baoik yovada BeATIOTOTTOINONG)

* A query is treated as a o-1r-® algebra expression
with the remaining operations (if any) carried out on
the result.

* For our example, the optimizer only considers:

Relational Algebra Block (will be considered for evaluation):

-‘-'5.,

OS sid=R.sidA R.bid=B.bidA\ B.color="red’ AS.rating=value_ from_nests u'._fu’mw'.'{

Sailors x Reserves x Boats))

« Aggregates, Having, Group-By are calculated after
computing the o-1-® of a query.

* Now the Optimizer needs to 1) enumerate the
alternative plans and ii) estimate cost of each plan,,

so=ra - Enumeration of Alternative Plans

Enum. Plans

Est. Cost (ATrapiOunon EvaAAakTikwyv MNAGvwy)

 Problem: The space of alternative plans for a given query is
very large!

« To motivate the discussion consider the binary query
evaluation plans and assume that only 1 join alg. exists.

/’4\ = ><]
.><./><I\D/<\D |><|/\.><1
. ¢ c R .
A B A B A B C D

* Question: How many such plans can we have?

« Answer: Number of Binary Trees with n nodes:

— N=4 we have 336 possible trees o
— N=5 we have 1008 possible trees Number of C — (2n)!

- Binary Plans: = (n+1)!

— N=10 we have 6 x 1010 possible trees
We certainly need to prune (kKAadéwoupe) the search space!

7-44

so=ra - Enumeration of Alternative Plans

Enum. Plans

Est. Cost (ATrapiOunon EvaAAakTikwyv MNAGvwy)

* The Query Optimizer therefore focuses on a

subset of plans.

All Plans

Algebraic Plans

/

/

Focus of the Query Optimizer

» Algebraic plans: those that can be
expressed with Relational Algebra operators
o-mT-®

K Enumerable plans: e.g., only binary

plans.

« Searched plans: Among binary plans only
consider the left-deep plans, i.e., where
right child of each join is a leaf (base
relation)

« Constructed plans: Those that are
actually constructed.

7-45

so=ra - Enumeration of Alternative Plans

Enum. Plans

Est. Cost (ATrapiOunon EvaAAakTikwyv MNAGvwy)

 Left-deep (apiarepoBabn) join trees:.

— A left-deep tree is a tree in which the right child of each join is a leaf
(i.e., a base table or index).

- Left-deep trees allow us to generate all fully pipelined plans
(TTARPWGS cWANVWHEVA TTAAVA EKTEAEONG) .

« As results are generated these are forwarded to the
operator higher in the tree hierarchy.

 Intermediate results not written to temporary files.
 NOT all left-deep trees are fully pipelined (e.g., SM

join, no results are geneWing sorting but only
during merging). =< o

/\ C

7-46

so=ra - Enumeration of Alternative Plans

Enum. Plans

Est. Cost (ATrapiOunon EvaAAakTikwyv MNAGvwy)

 Even by only considering left-deep plans, the number of
plans still grows rapidly when number of join increases!

><] ><] ><] I
Optimizers rely
/\ /\ /\ on System-R's
>< D > D >d D dynamic
/\ /\ /\ programming
>3 C > c > A approach to

/\ reduce the

A B B A B C search space

 In particular, we have N! possible plans, where N the number
of base relations participating in a join.

— With N=4, we have 24 possible plans Num ber Of
— With N=5, we have 120 possible plans

— With N=6, we have 720 possible plans Left'Deep
- | Plans*: N!
— With N=10, we have 3628800 possible plans

7-47
* Again assuming that only 1 join algorithm exists

S Cost Estimation of Plans

Est. Cos
e (YtroAoyiouog KooTtoug pe ExktéAeonc MNMAGvwy)
« Consider a Query Block:

SELECT attribute list
FROM A,B,Z
WHERE term1 AND ... AND termz

« Maximum # tuples in result is the product of the cardinalities of
relations in the FROM clause.
— i.e., |AI*IB|* ... * |Z]

 Reduction factor (RF) (2ZuvreAeorn¢ Meiwong). defines the
ratio of the expected result size / input size
— e.g., term1 yields 200 expected answers out of 1000 => RF,,,;-0.2

« How can a DBMS know these RFs for a table
without spending too much time? (next slidez

-51

.-~ Reduction Factors Using Histograms

Enum. Plans

estcost (2UVTEAEOTEC Meiwong pe loToypauuara)

 Wrong Answer: Scan the table => Too
Expensive

« Correct Answer: Utllize Histograms (tiny data
structures that approximate the real distribution
of values In a table (stored in sy |

Egquiwidth
Equidepth

Dusaribution D

| - |
A6 T BAY 10 T2 13 14

Frequency of App®arance

et | scket 2 et 3 wcket 4 Socker 4 -_..) o
Bache Bucke R Bech Wach Bucict | Bucket 2 Buchet 3 Buketd Buocket d
. . T 1 L

t=4

Initial Distribution of “age” Equiwidth Histogram Equidepth Histogram

7-52

