Department of Computer Science
University of Cyprus

EPL646 — Advanced Topics in Databases

Lecture 6

External Sorting & Query
Evaluation

Chapter 13-12: Ramakrishnan & Gehrke

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl446

6-1

External Sorting Introduction
(E¢wTepikn Tacivounon: Eilcaywyn)

Problem: We can’t sort 1TB of data with 1GB of RAM (i.e.,
more data than available memory) in main memory

Solution: Utilize an External Sorting Algorithm

— External sorting refers to the sorting of a file that resides on
secondary memory (e.g., disk, flash, etc).

— Internal sorting refers to the sorting of an array of data that is in
RAM (quick-, merge-, insertion-, selection-, radix-, bucket-, bubble-
,heap-, sort algorithms we saw in the Data Struct. & Alg. Course)

Objective: Minimize number of I/O accesses.
External Sorting is part of the Query Evaluation /

Optimization subsystem

— Efficient Sorting algorithms can speed up query evaluation plans
(e.g., during joins)!
6-2

Lecture Outline
External Sorting — E€wTtepikn Tagivounon

13.1) When does a DBMS sort Data.
13.2) A Simple Two-Way Merge-Sort
(ATTAN E€wTepikn Tagivopnon Je

Z UYX(DVE:U O'rl) and Execution

Relational Operators

13.3) External Merge-Sort (ECUWTEPIKA Fies and Access Methods
Taglivopunon JeE 2uyXwveuaon) Buffer Management
Disk Space Management

— Exclude 13.3.1: Minimizing the Number of
Runs.

13.4.2) Double Buffering (AITTAN
[TpokaTtayxwpnon)
13.5) Using B+Trees for Sorting

Query Optimization

6-3

When Does a DBMS Sort Data?
(Mote yia B.A Tagivouei Asdopeva;)
« When Does a DBMS Sort Data? (~30% of oper.)

— Data requested in sorted order
. e.g., SELECT * FROM Students ORDER BY gpa DESC;
— Sorting is first step in bulk loading a B+ tree index.

* i.e., CREATE INDEX StuAge ON Students(age) USING
BTREE;

* Recall how leaf nodes of the B+tree are ordered.

— Useful for eliminating duplicate copies in a collection of
records.

« SELECT DISTINCT age FROM Students;

* i.e., to eliminate duplicates in a sorted list requires only
the comparison of each element to its previous element
so this yields a linear order elimination algorithm. 6.4

Two-Way External Merge-Sort
(ATTAN E€wTepikn Tagivopnon JE 2UyXwWVeEUOn)

« Let us consider the simplest idea for external sorting
— Assumption: Only 3 Buffer pages are available
— ldea: Divide and Conquer (similarly to MergeSort, Quicksort)

 |dea Outline

— Pass 0 (Sort Lists):For every page, read it, sort it, write it out
- Only one buffer page is used!
- Now we need to merge them hierarchically

— Pass 1, 2, ..., etc. (Merge Lists): see next page for merging concept
- For this step we need three buffer pages!

Main Memo#y Sort

Buffer T >(E>Lo\—\.vmrr =
=g e

Disk ____Main memory | Disk

Disk | memory Disk buffers
Sorted Run or simply Run
Pass 0 AlateTayuéveg AKoAouBisg 1 Passes 1,2....

atrAG AkoAouBigg 6-5

Cost of Two-Way External Merge Sort
(KéoTocg ATTANC ECwTepIKAG Tacivopunon JE ZUYXWVEUON)

 Each pass we read + write
each of N pages in file. po55 0

*, Number of passes:

e.g.,

flogz

[log, 7]+1=

[log, 5]+1 _rz 31+1 =
[log, 4 |+1=[2]+1=3

-/ Total (I/O) cost is:
2N *(# passes)

e.qg., for N=7

_‘+1

for N=7,
1og10 1_r2 8]+1=4

2%7*([log, 7]+1) =

2%7*4 =56

i.e., (read+write) * 7 pages * 4 passes

That can be validated on the right figure

o Passt#0=2*7
» Passt#2=2*7

Pass#1=2*7
Pass$3=2*7

34 (62 [0,4] [87] [5.6] [3.4] [2] I 1ot fie
Y \ 2 \4 \4 Y Y \ 2 l PASS 0
3.4| |2,6/ |49 (7.8 [5.6] |13 2 “page runs
AN ya \, ya N\ ya \, ya
N N N PASS 1
2.3 4.7 1,3 2-page runs
4.6 8,9 5,6
N PASS 2
2.3 o
4.4 11.2] 4-page runs
6,7 3,5
8.9 6 —log, N |
1,2
2,3
3.4 8ipage runs
4.5
6,6
7,8
9 o

General External Merge Sort
(MCevikeupevn ECwTepIkn Taglivopnon YE ZUyXwveuaon)

« Let's turn the 2-way Merge-sort Algorithm into a Practical Alg.
— Assumption: B Buffer pages are available
— ldea: Merge (B-1) pages in each step rather than only 2 (faster!)

* Ildea Outline
— Pass 0 (Sort): Sort the N pages using B buffer pages

- Use B buffer pages for input
. That generates N1=|N/B|sorted runs e.g., N=8 and B=4 => N1=|8/4|=2

— Pass 1, 2, ..., etc. (Merge): Perform a (B-1)-way merge of runs
« Use (B-1) buffer pages for input + 1 page for output

1 * Number of passes will be reduced dramatically! (see slide 13)
3,4
52 23] 1o | mNeuT1 — >
T?\ [4-4| l e [| \ C—
L ,‘ 6,7 st output run Ly e
Input file : | ¢ 0 90
(9.4 8.7 ‘] | / L J
?] \j/j | = \“"/j"‘ INPUT B-1 ~——
3.1 L_;_‘ 2nd output run Disk Disk
i Buffer pool with B=4 pages ‘- B main memory buffers
O=11
] Pass 0 Passes 1,2....

Number of Passes of External Sort

» External Merge Sort is quite efficient!

 With only B=257 (~1MB) Buffer Pages we can sort N=1 Billion
records with four (4) passes ... in practice B will be larger

« Two-Way Mergesort would require = log,10° [+1=30+1 passes!

N B=3 |B=5 |B=9 |B=17 B=129 B=257
100 7 = 3 2 1 1
1,000 10 | 5 4 3 2 2
10,000 13 | 7 5 = 2 2
100,000 17 | 9 6 5 3 3
1,000,000 20 | 10 7 5 3 3
10,000,000 23 | 12 8 6 4 3
100,000,000 | 26 | 14 9 7 = =
1,000,000,000{ 30 | 15 10 3 5 <

* Results generated with formula: 1 + |_10gB_1 |_N / B—|—| 6-13

Double Buffering
(AirtAn MNpokartaxwpnon)

An /O request takes time to complete. Only think about all the
involved layers and delays (Disk Delays, Buffer Manager, etc)

To reduce wait time of CPU for I/O request to complete, can prefetch
(Trpoavaktnon) into 'shadow block’ (uTTAOK avTiypa@o)

Main Idea: When all tuples of INPUT; have been consumed, the CPU
can process INPUT; which is prefetched into main memory instead of
waiting for INPUT; to refill. ... same idea applies to OUTPUT.

INPUT 1

= 3/-\ ——
INPUT 2 OUTPUT []

>l Bl e

N 00 0
\“}\ b
. block size
DlSk INPUT k DlSk

(B main memory buffers, k-way merge)

6-15

Department of Computer Science 6@
University of Cyprus

EPL646 — Advanced Database Systems
Overview of Query Evaluation

Chapter 12: Ramakrishnan & Gehrke

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

6-19

Overview of Query Evaluation
(ETriokotTnon Atrotipnong ETTepwTtnoewy)

« We will now focus on Query Evaluation (Atrotipnon
ETrepwtiRocwy), specifically Query Optimization
(BeATioTOTTOINON ETTEPWTACEWYV)

Sophisticated users. application

Unsophisticated users (customers. travel agents. etc.) programmers, DB administrators
[Web Forms] [.Application Front Ends] [SQL. Interface]
—— '\:f " e —
_—— e o e o o o e e =S DL COLRIDRTANDS o o - = = == - shoyecqumand floyw
¥ |
I Plan Executor | I Parser | shows inlcrﬂion |
Que .
I Operator Evaluator | I Optimizer I Ewval tion 1
Engine
-———————-_-_-_-_-_-_-_-_*-_-_-_-_-_-_-_-_-——————————— |
TP e e Files and Access Methods
Manager J’
Recovery
Buffer Manager NManager
I_.ock =
Manager
S oncurrcncy Disk SpacefManager)
[ontrol DBMS

= — IV

Index Files ——— S — shows references

\ System Catalog

Data Files ﬂ_/

6-20

Query Evaluation
(AtToTipnon EmTepwtnoswy)

« We shall next discuss techniques used by a DBMS to
process (emegepyadlerai), optimize (BeATioToTTOIE), and
execute (ekteAei) high-level queries.

* A Query Evaluator (Amrouiuntic Emepwirnoswy)

A) Parses (AvaAucel): Takes a declarative description (dnAwTikn
replypaen) of a query (i.e., expression what we want without
describing how to do it (e.g., SQL).

» That is different from imperative descriptions (TTpOOTAKTIKN
replypagn): expression of how to achieve the expected result
(e.g., C, C++, JAVA, efc):

B) Optimizes (BeATioToTrolgi): Determines plan for answering query

(expressed as DBMS operations).

C) Executes (EkTeAei): Executes method via DBMS engine (to obtain
a set of answers that answer a given query)

=> Next slides contain further details.... 6-21

Query Evaluation
(ATToTiuNON ETTEPWTNCEWY) Pare

Optimize

 A) Parser (AvaAuTAg): Execute

— Scanner (AekTikQ AvdAuon): Identifies the language tokens — such as SQL
keywords, attribute names (yvwpioparta), relation names (ovopara
oX£0EWV), etc.

— Parser (ZuvrakTtikil AvaAuon): Checks the query syntax to determine whether it
is formulated according to the syntax rules (kavovec ypaupatikig) of the query
language.

E.g., FROM TABLE SELECT *; // not syntactically correct.
— Validator (EmikUpwon Eykupotnrtag): Checks that all attributes and relation

names are valid (op8d) and semantically (ocnuacioAoyikd) meaningful names

E.g., WHERE JOB ="SECRETARY’ AND JOB =’"MANAGER'’ is syntactically correct but semantically
incorrect. (will always yield an empty set as an employee can’t be both)

« Parsing yields an Internal tree representation of the query, called a
Relational Algebra Tree (Aévdpo 2xeaiakwyv TeAeoTwv) e.g.,

SELECT S.sname saL Relational Algebra Tree
FROM Reserves R, Sailors S T name
WHERE R.sid = S.sid . 1

AND R.bid = 100 AND S.rating > 5 A=) i e

? ><a
g . stamsid_ 6-22

Tsname (,Uim!-. 1002 ruhnq).’.(Reseruve .“v'[-"C,,,[,_,,,]b(Ii[()l'-‘i)) .
: Reserves Sailors

Query Evaluation
(ATTOTIiHNON ETTEPWTNOCEWYV) o

Optimiz
B) Optimize (BeATioTOTTOINON) Execute
 The DBMS must then devise an execution strategy

(query evaluation plan).

« That is difficult though, as a query might have many
alternative options!

 Best choice depends on many factors: size of tables,
existing indexes, sort orders (asc/desc), size of
available buffer pool, BM replacement policy,
implemented algorithm for operator evaluation (e.g.,
Sort-Merge Join, Hash-Join, etc).

« The process of choosing a suitable, «reasonably
efficient but most of the time NOT optimal» one is known
as Query Optimization (BeATioTOTTOINON
EmmepwTnoewy).

t

6-23

Query Evaluation Plans
(MAavo Atrotipnong EtrepwTtnong)

Query Evaluation Plan (or simply Plan). A Tree of

Relational Algebra operators (essentially o-mr-join [basic
block |, while rest operators are carried out on the result)

with choice of algorithm for each operator.

Query Evaluation Plan A

(On-the-fly)

sShame

(On-the-fly)

\/Pipelined: Temporary
Results not buffered or
written to disk

B><1 (Simple Nested Loops)

bid=100/\ rating >5

sid=sid

N

Reserves Sailors

Query Evaluation Plan B

(On-the-fly)

sShame

B><1 (Sort-Merge Join)

sid=sid

/ \
(Scan;

rating >5 write to
temp T2)

(Scan;
write to o
temp T1)

bid=100

Reserves Sailors

6-24

Relational Operations
(2xe0o10KOiI TEAEOTEQ)

* We will consider how a DBMS implements:

— 14.1-14.2) Selection - EmmiAoyn (o): Selects a subset of rows from a Relation.
— 14.3) Projection — lNpoBoAn (1): Deletes unwanted columns from a Relation.
Subsequent slides

— 14.4) Join - Suvévwan (®) Allows us to combine two relations

— 14.5) Set-difference - Aiapopa (-): Tuples in Relation 1, but not in Relation 2.
— 14.5) Union - Evwaon (U): Tuples in Relation 1 or in Relation 2.

— 14.6) Aggregation - 2uvaBpoion (SUM, MIN, etc.) and GROUP BY

« Since each op returns a relation, operators can be composed!

« After we cover the operations, we will discuss how to optimize
queries formed by composing them.

* Relational Algebra operators are closed: a set is said to
be closed under some operation if the operation on
members of the set produces a member of the set. 6.26

Schema for Examples
(2xnua yia Napadeiypara)
* Assume the following Schema:

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

* Also assume the following values:

— Sailors: Each tuple is 50 bytes long, 80 tuples
per page, N=500 pages of such records stored
In the database.

— Reserves: Each tuple is 40 bytes long,100
tuples per page, M=1000 pages of such
records stored in the database.

6-28

The Selection Operation |
(O TeAeotg ETniAoyng |)

Consider the selection query listed below.
SELECT *

FROM Reserves R
WHERE R.rname = ‘Joe’
Selection with No Index, Unsorted Data:

— ldea: Scan R, checking condition on each tuple on-the-fly and
returning qualifying objects.

— Cost: M, where M is the # of pages for Reserves
Can we improve the above approach?
— e.g., if data is Sorted or if Hash index on R.rname is available
then this query could be answered more quickly!
We ghall now only focus on .simple OR attr oper value(R)
gueries and then extend the discussion to more complex

boolean queries (e.g., OR1.attr oper value AND R2.attr oper value (R))
6-29

The Selection Operation I
(O TeAeotric Emidoyng 1)

/ Selection using No Index, Sorted Data:

— ldea: Perform binary search over target relation; Identify
First Key; and finally scan remaining tuples starting at
first key.

— Search Cost: log,M

— Retrieval Cost: #matching_records / PageSize (i.e.,
#matching_pages)
* For the R relation the search cost is: 09,1000 ~ 10 I/Os

* |n practice it is difficult to maintain a file sorted.

* |tis more realistic to use a B+Tree using
Alternative 1 (see next slide)

6-30

The Selection Operation Il
(O TeAeotric Emidoynig)

. Selection using B+Tree Index:

— ldea: Use tree to find the first index entry that points to a
qualifying tuple of R; Then scan the leaf pages to retrieve all
entries in the key value that satisfy the selection condition.

— Search Cost: logeM, (typically 2-3 I1/Os) F:branching factor

— Retrieval Cost: i) Unclustered: #matching_records (each record
on separate page); Clustered: #matching_records/PageSize (ixe.,
#matching_pages)

« Why is a B+Tree NOT always superior to Sc:anning?)at I

— Query: SELECT * FROM Reserves R WHERE R.rname = ‘Joe’ ...‘-

— Rrelation features 1000 pages. Data Records

— Assumption: Selectivity (emAe€iuoTnNTa) of Query is 10% (i.e., 10%*1000
pages * 100 tuples/page = 10,000 tuples)

— Clustered Index Cost: 3 1/0s + 100 1/Os (tuples on 100 consec. pages)

— Unclustered Index Cost: 3 1/Os + 10,000 I/Os (each tuple on differ. Page)
It is cheaper to perform a linear scan that only costs 1000 I/Os! 6-31

The Selection Operation IV

(O TeAeotrig Emidoyrg V)

/. Selection using Hash Index:
— ldea: Use hash index to find the index entry that points to a

qualifying tuple of R; Retrieve all entries in which the key value
satisfies the selection condition.

— Search Cost: Const (typically 1.2 I/Os, recall lin./extd. hashing)
— Retrieval Cost: i) Unclustered: #matching records (each record on

— T 600
Daniels, 22, 6003 ="
EXal I Iple File of <sal. rid> pairs

separate page); Clustered #matchlng records/PageSize (i.e.,
#matching pages) —

Example of Unclustered Index

hashed on sal

Query: SELECT * FROM Reserves R WHERE R.rname = ‘Joe’

Assumption: Selectivity (emAeCiuoTnTa) of Query is 10% (i.e., 10%*1000 pages * 100
tuples/page = 10,000 tuples)

Clustered Index Cost: 1.2 1/Os + 100 1/Os (tuples on 100 consec. pages)

Unclustered Index Cost: 1.2 I1/Os + 10,000 I/Os (each tuple on differ. Page) 6-32
« Again, it is cheaper to perform a linear scan that only costs 1000 1/Os.

Complex Selections
(20vOeTeC ETTIAOYECQ)

Selection WITHOUT Disjunctions

Template: c oA gA A 2(R) That is in CNF
. (conjunction of clauses, where a
First Approach clause is a disjunction of literals)

« Compute the most selective access path R’ = g, (i.e., the one that
returns the fewest irrelevant results compared to og (R) ... 07 (R))

— This could be a composite selection e.g., (0 AA A c(R)) ... depends on
what access methods (indexes) are available.

« Then apply on-the-fly the rest conditions on R’ (i.e., g A A 2(R’))

Example
» Consider day<8/9/23 AND bid=5 AND sid=3.

« A B+ tree index on day can be used; then, bid=5 and sid=3 must
be checked for each retrieved tuple on-the-fly.

« Similarly, a hash index on <bid, sid> could be used; day<8/9/23

must then be checked on-the-fly.
6-34

Complex Selections
(20vOeTeC ETTIAOYECQ)

Selection WITHOUT Disjunctions
OarBA .. Az(R)

Second Approach

« Compute R, =0, (R)and Rg =05 (R), and ... and , R, = o, (R) using
independent access methods (if indexes are available)

* Intersect RID Sets: sort(R,) N sort(Rg) N ... N sort(R,)

— Note: Intersecting sorted runs is cheaper than intersecting arbitrary runs.
« Each DBMSs uses different ways to achieve RID intersection.

Example
» Consider day<8/9/23 AND bid=5 AND sid=3.

* |If we have a B+ tree index on day and a hash index on sid, both using
Alternative (2)

« Use both indexes (i.e., day<8/9/23 [B+tree] and sid=3 [Hash Index])
* Intersect results, retrieve records and then check bid=5. 6-35

That is in CNF

The Projection Operation
(TeAeoTnC NMpoFoAng)

Consider the projection query T4 piq(Reserves) listed

below. SELECT DISTINCT (R.sid, R.bid)
FROM Reserves R

— recall that in relational algebra all rows have to be
distinct as the query answer is a set.

The projection operator is of the form

Trattr1,attr2 attrm(R)
The implementation requires the following
— Remove unwanted columns (on-the-fly)

— Eliminate any duplicate tuples produced.
» This step is the difficult one!

We will describe a technique to cope with duplicate
elimination based on Sorting

6-37

Projection Based on Sorting
(MpofoAn peow Tagivounong)

* First approach: use External Merge Sort Algorithm

 Phase 1: Create Internally Sorted Runs (selected attrib.)

- Scan R and produce a set of tuples that contain only the desired
attributes i.e., only <R.sid, R.bid> (First Step of ExternalMergeSort)

- Read_Cost: M 1/0s & Write_Cost: T I/Os, where T is some fraction of M
(i.e., depending on fields projected out) Total: M + T I/Os

- Example: Assume that T=250 then Total Cost: 1000 + 250 = 1250 1/Os

Original relation Sorted relation

e — - e —~—
4

3 SELECT DISTINCT (R.sid, R.bid)
| INPUT FROM Reserves R

Create
Sorted
Runs

Alsé-R;n-dve »
Unnecessary
Attributes 6-38

—",

Disk

Projection Based on Sorting
(MpofoAn peow Tagivounong)

* Phase 2: Merge tuples using the External Sort Phase 2
based on the projected keys (i.e., <R.sid, R.bid>)

— Cost: 2T*(#passes) 1/0Os where #passes: |log, ,[T/B]]
(i.e., cost of the External Merge Sort without first step)

- Example: Using B=20 Buffer pages and T=250 I/Os
Passes: |_10g19 |_250/ 20_|—| =2 Total Cost: 2*250*2 = 1000 I/Os

Step 3: Scan the sorted result (on-the-fly, consequently
costs nothing), comparing adjacent tuples and discard

duplicates (could have been carried out during Phase 1-2)
. e.qg, <1,2>ﬁ, <2,2>, <2,3>,

_ Total Cost: M + T+ (2T * [log,,[T/B]])
— Using Example: 1000 + 250 + 2*250*2 = 2250 I/Os
- This step could also have been carried out during steps 1-2.

Use of Indexes for Projections
(Xpnnon Eupetnpiwyv yia INpofFoAn)

So far we have NOT considered using Indexes for Projections

If an existing index contains all wanted attributes as its search
key then we can apply an index-only scan.

— e.g., Q="SELECT DISTINCT R.rname FROM R” and Hash Index <R.rname> is
available.

— We can use the index to identify the R.rname set (i.e., index scan). We must
then use sorting or hashing to eliminate duplicates.
If an ordered (i.e., tree) index contains all wanted attributes as
prefix of search key, can do even better:

— e.g., Q="SELECT DISTINCT R.rname FROM R” and B+Tree Index <R.rname>
is available.

— We can use the index to identify R.rname set (index scan) discard unwanted
fields, compare adjacent tuples to check for duplicates.

— We do not even need to apply sorting or hashing for the duplicate
elimination part!

6-42

