Department of Computer Science
University of Cyprus

EPL646 — Advanced Topics in Databases

Lecture 5

Indexing |lI: Hash-based Indexing
Chapter 11: Ramakrishnan & Gehrke

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

5-1

http://www2.cs.ucy.ac.cy/~dzeina/

Lecture Outline
Hash Indexes (Eupetripia Karakepuatiopou)

« 11.1) Static Hashing (ZTAaTIKOG
KaTtakepuaTIONOG)

* Dynamic Hashing (Auvauikog and Execuion
Relational Qperators

KaTa Kap ” aT I o. ” 6;) l Files and Access Methods_

—11.2) Extendible Hashing (ETTeKTaTOQBufer anagement
KGTGKSpHGTIO’ J(’)g) Disk Space Management

—11.3) Linear Hashing (I pauuIKOg —oa_
KaTtakepUaTIONOG)

— 11.4) Extendible vs Linear Hashing

5-2

Introductory Remarks
(Elcaywyikéc ETTionuavaoeig)
« As for any index, 3 alternatives for data entries k*:
— Alternative 1: <k>
— Alternative 2: <k, RID>
— Alternative 3: <k, [RID,, RID,, ..., RID]>
-~ Choice orthogonal to the indexing technique
 Hashing (Katakepupatiopog): key-to-address
transformation: involves computing the address

of a data item by computing a function on the
search key value.

 Hash Indexes (Eupempia KarakepuaTiopou) are
best for equality queries (EmepwTrnoeEIc
loornracg). Cannot support range queries.

Hash Function h(k)

(2uvapTtnon KatakepuaTiopou)

Hash function [h(key)]: Maps the key to a bucket (kddo) where the key is
expected to belong.
A good hash function has the following properties:

Distributes keys uniformly (opoidpop@a) - all buckets are equally likely to be picked -
and at random (tTuxaia) - similar hash keys should be hashed to very different buckets.

Low Cost. Plain hash functions (rather than cryptographic hash functions such as
MD5,SHA1) usually have a low computational cost.

Determinism: for a given input value it always generates same hashvalue.

We shall utilize a Trivial Hash Function (TeTpigpdévn CuvapTnON
KOTOKEPMATIOHOU), i.e., the data itself (interpreted as an integer in binary
notation). E.g., 44,,= 101100,

Which Bucket does key k belong to: h(k) mod N (N = # of buckets). These are
the d least significant bits.

— 0O

h(key)

N

N-1 5-4

Static Hashing

(2TaTIKOC KaTaKEPUATIOUOG)

 Build a fixed structure at index construction time.

« Data Entries are stored on a number of successive
primary pages (TTpwToRaduieg oeAideg).
— Primary pages are fixed, allocated sequentially during index

construction. Overflow pages (o€Aidec utrepxeiliong) are utilized
when primary pages get full.

— Primary Pages are never de-allocated during deletions.
— That is similar to the way ISAM indexes are constructed...

O R o o o
1 T/ . . .
0
K h(k) % 1
> N
k: Search Key ,e.g., age field Overflow pages
h(k): Identifies bucket for data entry k*
N-1 {+—> - - -

Primary bucket pages 5.5

Static Hashing

(2TaTIKOC KaTaKEPUATIOUOG)

Search: Ideally 1 I/O (unless record is located in overflow
chain). Insert/Delete: 2 1/0Os (read and write) page.

Drawback: Long overflow chains (AAucideg ZeAidwv
YmrepyxeiAiong) can develop and degrade performance.

How to avoid overflow chains?

1. 80% Occupancy: By initially keeping pages 80% full we can
avoid overflow pages if the file does not grow too much.

2. Rehashing (EravakepuaTtiopog): Hash the file with a different
hash function (see next slide) to achieve 80% occupancy and
no overflows. Drawback: Takes time (we need to rehash the complete DB)!

3. Dynamic Hashing: Allow the hash function to be modified
dynamically to accommodate the growth/shrink of the
database (i.e., essentially renash selected, rather than all, items)
« Extendible Hashing (ETrekTakTd KaTaKEPUATIONO)
 Linear Hashing (I'papuiké KatakepuaTtiopo) 5.6

Extendible Hashing
(ETreKTaTOC KATAKEPUATIOUOG)

« To understand the motivation of Extendible Hashing
consider the following situation:

* A Bucket (primary page) becomes full (e.g., page 00 on
left).Why not re-organize file by doubling # of buckets?

- /,’ OOO My <308, SO0 | 101100
Doubling #

. — — | /, Amihbyy. 26 - ‘\:ll(ll".' 011001
Ut|||ze the 2 .|eaSt h(age)=00 o Smith, 44, 3000 e B UCketS /// /,’7 001 Boasw. 33, 4003 100001
significant bits of 0 || Jores, 40,6003 |y ol

. L= N 4 ,/ Cans. GO, SO0
key age (i.e., %4) .- Tracy, 44,5004 |4 - . 010 110010
age 7 N pagey=01 ”:ll:/’_'_’_’_____ '

— m ,.""I"e‘ """ T| Ashby, 25 3000 [f — S > 011

\H" "'/“-1_ BGSH 33 !n'[:':!' - \:\\ \\\‘\A Saavniitiu, o0]
N Ol Bristow, 29, 2007 |+ Utilize the 3 Ieas\t:\\ 100 Tracy, 44, 5004 101100
significant bits of *\ ° “
h{age)=10 "~] i N
(age) [ase 205008 W key age (i.e., %8) . 101l 5o =5 =5 1] 011101
10 || panies, 22, 6003 [+ \\
| 110 Sy—— -~ == . =oo= |]010110
Data File 111

- Answer: The entire file has to be read once and written back
to disk to achieve the reorganization, which is expensive! 5-7

Extendible Hashing
(ETreKTaTOC KATAKEPUATIOUOG)

Basic Idea: Use directory of pointers to buckets and
double the directory instead of Doubling the Data file.
— Directory much smaller than file, so doubling is much cheaper.

Just split the bucket that overflowed NOT ALL of them

- Only one page of data entries is split.
— Additionally, no overflow pages are constructed!

| /I,l 32*16?‘ Bucket A

,,,,, L 00 ///I’| 1* 5+ 21*#13¢t BucketB
_%@ > ol —/:"l 10* | Bucket C
\i‘\> 11 \\Iﬂl 15* 7* 19* | Bucket D

|
DIRECTORY I Data Pages

5-8

Extendible Hashing: Search
(EtrekTatdc Katakeppamioyog: Avaltnon)

« Example: Locate data entry r with hash value h(r)=5 (binary
101). Look at directory element 01 (i.e., “Global-depth least-
significant bits of h(r), dnA., 2 AiyoéTeEpa CNUAVTIKA yneia’)

« We then follow the pointer to the data page (bucket B in figure)

LOCAL DEPTH — | 5
« . oo Bucket A
T -
2 2
“ " * Ok 91k 17k Bucket B
r="Demo 00 |11 5t 21 13 Global/Local
T S
101 10 \\2 described more
11 N 10* BucketC | carefully next
DIRECTORY 2
15* 7* 19 Bucket D

DATA PAGES 5-9

Extendible Hashing: Insert

(EtrekTatdc Katakeppamiopyog: Eicaywyn)

Insert Algorithm Outline
Find target buffer: Done similarly to Search

If target bucket is NOT full, insert and finish (e.qg., insert h(r)=9, which
IS binary 1001, can be inserted to bucket B).

If target bucket is full, split it (allocate new page and re-distribute).

E.g., insertion of h(r)=20 (10100) causes the split of bucket A and
redistribution between A and A2
__________ 1
ciiﬁ 32:-::' b h-m o | o Bucket A “m 2::”“00“9 I -% S Rl Bucket A2
L AEA 16| I/’
2 X bataentryr @0 N, mmmm————— 1 needs to be
Bl 2] e o0 L r_%s o] s | pOiNted from
Insert :'1’ | 7| lrls[a]] Seee f; — ; - the directory.
20 o — = 1 “‘“‘\m. o Bucket € Thus, we will
(10100)n 7 Lo T sk N “\\ - doublethe
o oreeront N[iel# e] > | directory (next
DIRECTORY "-_}_‘I?!T'_jg:_ Bucket b 100' ; ________ S||de) |
DATA PAGES | —J——4 o]] ' T 1N

Split Image of A (A1T£IKOVIO'I‘] Alaipgong)

Insert h(r)=20 (Causes Doubling)

Bucket A

21*% 3k Bucket B

Before
LOCAL DEPTHZ}:2:
GLOBAL DEPTH 3241 6
=z z
>
00 / 1* 5*
01 — SRR
10 ~ s
u |] 100

7
DlRECTox\ """
15+7*

4* 12*20*

Bucket C B%Zt

Reorga
BucketBpijzation

Bucket A2

(‘splitimage’

of Bucket A)

After
LOCAL DEPTHZ i3
GLOBAL LREPTH 32*16F Bucket A
T ,//////ﬂﬁéﬁ
000 7 | 1% 5* 21*13F Bucket B
001 ’”/7¢<ij
010 |~ 22
011 N 10* Bucket C
s
101 2
110 7 15*7* 19* | BucketD
111
3 Bucket A2
DIRECTORY Y4« 1220+ | (splitima

« When does bucket split cause directory doubling?

When target bucket is full AND Local Depth ==

Global Depth

Otherwise, a red pointer is available (i.e., vacant page is already avail.).

Notice that after doubling some pointers (red) are .
redundant (those ‘will-be utilized in'subseqguent inserts)

X

Comments on Extendible Hashing
(2xOAIa yia Tov ETrekTatdé Katakepuatiouo)

Global depth of directory: Tells us how many least significant bits to
utilize during the selection of the target bucket.

- Initially equal to log,(#Buckets), e.g., 10g,8=3

— Directory Doubles => Increment Global Depth

Local depth of a bucket: Tells as how many least significant bits to
utilize to determine if an entry belongs to a given bucket.

- Bucket is Split => Increment Local Depth

(GlobalDepth — LocalDepth) can be larger than 1 (e.g., if
corresponding buckets are continuously splitted leaving in that way
the local depth of other nodes small while global depth increases)

e z:m‘ ’L.faz 5] swetn

000 ;,_ _5_12 = === | During an Insertion to full bucket if
o Zx o Local Depth == Global Depth

o then we need to split!

o 'Fr} Co 5-12

\ .
LY E —
DIRECTORY 4 | | Bucket A2 (split image of bucket A)

2| 20°

Extendible Hashing: Delete

(ETrekTatdg KatakepuaTiopog: Alaypagn)
- Delete: Essentially the reverse operation of insertion

- If removal of data entry makes bucket empty then merge
with “split image’ (e.g., delete 32,16, then merge with A2)

- If every bucket is pointed by two directory elements we
should halve the directory (although not necessary for

correctness)
LOCAL DEPTH L—"" -
GLOBAL DEPTH ._'_32_'_5] Bucket A LOCAL DEPTN " bm
\ y N X GLOBAL DEPTH s FEO Bucket A
\ ’ |
; / Fz—t — X Data entry r
" Py - L1 o A
000 Iz, J\ B .!.1 5.121. ~ Sucket B Halve '—:.—'—I ri? with h(r)=32
I T i Bkl Bl | — ——
001 A . 00 . | 5 2., 13* Bucket B
oo [N/ [Directory 4 ——=
o1 | W=~ %0’ [| BucketC ; | —
., _J'\ L . 0 . 2 [
100 | AN S . = N 0
:._\ur_]‘.h .g\f 11 | T i l Bucket C
101 i Vi .'_J',-' ‘\\ {g‘.‘i -) L i | -
110 7 VY 5| 7 | 19 Bucket D
A | | : T
M| 1\ \ DIRECTORY | |
\ ; X qer| 7 |10
@ Split-Image of A w7 pucketd
DIRECTORY A & 12*| 207 --1|| Bucket A2 (split image of bucketr A)
i DATA PAGES

Comments on Extendible Hashing
(2xOAIa yia Tov ETrekTatdé Katakepuatiouo)

« Equality Search Cost: If directory fits in memory
then answered with 1 disk access; else 2.

— Static Hashing on the other hand performs equality
searches with 1 I/O (assuming no collisions).
* Yet, the Extendible Hashing Directory can usually
easily fit in main memory, thus same cost.

Other Issues:

Directory can grow large if the distribution of hash values is
skewed (aoUMMETPN KaTavouR) (e.g., some buckets are
utilized by many keys, while others remain empty).

Multiple entries with same hash value (collisions) cause
problems ... as splitting will not redistribute equally the keys,

Linear Hashing (LH)
(I pappIkOoC KatakepuaTiopog - I'K)

« Another dynamic hashing scheme (like EH).

* LH handles the problem of long overflow chains (presented Iin
Static Hashing) without using a directory (what EH does)

| Idea: Use a family of hash functions h,, hy, h,, ... where each
hash function maps the elements to twice the range of its
predecessor, I.e.,
— if hy(r) maps a data entry r into M buckets, then h,,,(r) maps a data
entry into one of 2M buckets. Hash functions are like below:
* h,(key) = h(key) mod(2'N), i=0,1,2... and N=“initial-#-of-buckets”

— We proceed in rounds of splits: During round Level only h .,(r) and
N eve+1(r) are in use.

— The buckets in the file are split (every time we have an overflow), one-

by-one from the first to the last bucket, thereby doubling the number
of buckets.

5-15

Linear Hashing: Insertion
(Ipappikoc Kartakepuatiopog: Eicaywyn)

Insert Algorithm Outline:
« Find target buffer (similarly to search with h (1) and hy . e.1(r))

« [Iftarget bucket is NOT full, insert and finish (e.g., insert h(r)=9, which is
binary 1001, can be inserted to bucket B).

« [f target bucket is full:

— Add overflow page and insert data entry. (e.g., by inserting h(r)=43 (101011)
causes the split of bucket A and redistribution between A and A2

— Split Next bucket and increment Next (can be performed in batch mode)
Note that 32(100000), 44(101100), 36(100100)

Level=0
Level=0, N=4
PRIMARY OVERFLOW
h
hy | ho PRIMARY 1 ho PAGES PAGES
PAGES [m === ==

| Next=0 "
000 | 00 Wl wlw | 0 : :32 ' 1 A
| i e B Nedtei— — — — = |

001 | o ~TE L Add 43 oo MNrisjs]

— < Data ent r __
| - 1 (10 10112) o0 | 10 Wwlw]w) Overflow page

010 10 el walwlarl, @00 A\ M==N====/7 777 T MWV L o =
| 147 187 107 30" e Primary -l I
| 1 bucket page I
| =TT '
1 '_T_'_'_'_‘r_‘ . - “v—o . | -

on 1 | 31° 8°| 7 [11* L " L%'I,-as_ﬁ _:_L el 4.3_ _1. i .

1 [= === ==
e — T |

This information is The actual contents 100 00 | | 4q°| 36° | | = = == = = -
Jor illustration only of the linear hashed file 5' 16

Linear Hashing: Insertion Remarks
(Mpapuikoc Karakepuatiopog: Emionuavoeig Eicaywyng)

« The buckets in the file are split (every time we have an
overflow), one-by-one from the first to the last bucket N
(using Next index), thereby doubling the number of
buckets.

« Since buckets are split round-robin, long overflow chains
presumably don’t develop (like static hashing) as
eventually every bucket has a good probability of a split!

« LH can choose any criterion to trigger’ (TrpoKaA£o€l)
split :

— e.g., Split whenever an overflow page is added.

— e.g., Split whenever the index is e.g., 75% full.

— Many other heuristics could be utilized.

5-17

Linear Hashing: Increasing
Level after Insert

If Next = Ny (after overflow) then level is increased by

1 (thus h2, h1l will be utilized) and Next becomes O
 Below the addition of 50* (110010)causes Next to become
equal to 4, thus the Level is increased by one.

Level=0
PRIMARY OVERFLOW

ho PAGES PAGES
00 | 30*
10 * * * *‘

Next=3 - 10
1 31:35* 7¢_ 114 [43*

N— e

00 | 4436+
01 | 5* 37*00+
10 [14*30%02* |

BEFORE INSERTION

hi

000
001
010

011

ho
00

01
10

11

00

Level

Next=0

PRIMARY OVERFLOW
PAGES PAGES
[32* |
Lo* 25+ i
* * * * *

[44* 36* \

Corresponding

|5* 37* 29* — Bucket (Kadol
AvTioTolxiag)
14* * *
I__________:'_,/
LT ||
———————————— Ng=8---—-----------------5-18 -

Overview of LH File
(Avaokottnon Apxeiou ['K)

 Assume that we are in the middle of an execution.
« Then the Linear Hash file has the following structure

Buckets that existed
at the beginning of

this round:

Splitted Pages

Unsplitted Pages
To insert: Utilize

New Pages from Split
“split image' buckets:

created (through splitting

of other buckets) in this

round 5-19

Linear Hashing: Search
(IpappIKOG KaTtakepuaTiopog - AvalnTnon)

Level=0
PRIMARY OVERFLOW . .
(This info is 1| o PAGES e Unsplit Split
for illustration
only!) 000 00 \H__I_ | hLeveI(r)
| . Next=1]
1 3 —
L [v[=]s] |
010 [10 | 1] 187 10| 30° N fevei(N)
o1 " 31 35[‘" 1" e l 1
N In|t|a| k;)ug_lgets for-round-R N I—
1m ¥ Rl -l Level(r) T NR

Search: To find bucket for data entry r, find h . (r):
Unsplit Bucket: If h . (r) In range [Next..Ng) then r belongs here (e.g., 9)

Split Bucket: If h ¢ (r) maps to bucket smaller than Next (i.e., a bucket that
was split previously, then r could belong to bucket h_,(r) or bucket h . (r)
+ Ng; must apply h.,-1(r) to find out (e.g., 44,,=101100,)

5-20

