Department of Computer Science
University of Cyprus

EPL646 — Advanced Topics in Databases
Lecture 4

Indexing II: Tree-Structured

Indexing and ISAM Indexes
Chap. 10.1-10.8: Ramakrishnan & Gehrke

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl446

4-1

Lecture Outline
Tree-Structured Indexing
« Note: In prior lectures we gave an

overview of Storage and Indexing. In
this and the following lecture we will

explore Indexing in more detalil. Query Optmization

* 10.1) Introduction to Tree Indexes

. 10.2) The ISAM Index '_
— Structure of Nodes in Trees, Disk Space Management

— Binary Search over Sorted Files,
— Binary vs. N-ary Search Trees,

— ISAM: Indexed Sequential Access Method
(Outline, Search, Insert, Delete, Examples)

4-2

Indexes (Access Methods)
(Eupetnpla Acutepevouvocac Mvnung)

 An index Is a data structure that has index
records that point to certain data records.

* An index can optimize certain kinds of
retrieval operations (depending on the index).

 Definitions

— Index Page (ZeAideg Eupernpiou) vs. Data Pages (ZeAideg
Aedopévwy): Index Pages store index records to data
records. Both reside on disk because we might have many

ndexPeoe | of these pages!

— Data Record (Eyypagn Asdopévwy): Stores the actual
data e.g., (59,Mike,3.14) .

are — Index Record (Eyypaegn Eupernpiou). Stores the RID of
00 another index record (then called index entry) or a data
record (then called data entry)
4-3

Data Entry k* Examples
(Mapadeiyuata Karaxwpnong k*)

 Alternative 1: <k>

Results in a 59. Mike, 3.14 Index Data Entry
Index File Organization!

« Alternative 2: <k, RID>
59, RID#10 Index Data Entry

590 Mike 3.14 Data Record
RID#10

« Alternative 3: <k, [RID,...,RID]>

99, RID#10, RID#61, #RID82 Index Data Entry

________________ //&

59 Mike 3.14 50 Chris 33.14 59 Jim 53.14 Data Record
RID#10 RID#61 RID#82

4-5

Introduction to Tree Structures
(Elcaywyn oe AevopikeC AOUEC)

 We will study two Tree-based structures:

— ISAM: A static structure (does not grow or shrink).
 Suitable for situations where the target relation does not
change frequently;

« Copes better with Locking Protocols (explained later),
because the index/data entries are statically allocated, thus
are not required to be locked during concurrent access.

— B+ tree: A dynamic data structure that adjusts efficiently under
Inserts and deletes.

« Most widely used tree structure in DBMS systems because it
copes efficiently with updates! and because the cost for range
and equality searches is good.

« Will be covered subsequently in this lecture!

4-6

Structure of Nodes In Trees
(Aoun Koppou og Asvopa)

« Same Structure for ISAM and B+T

rees (we shall

utilize Alt.1 with keyonly unless otherwise noted)
« M Keys and M+1 Pointers to children (either

iIndex entries or data entries)

+rdex-emry

ro Kq |P1 Kol P

; :
« Example with M=

20

33

]
2
/

10*| 15* 20*

27*

33*

37*

4-7

ISAM: Indexed Sequential Access Method

A simple tree structure utilized by DBMS systems
Constructed Statically at index creation time.

Consists of Non-leaf (index entries, allocated at creation
time) and Leaf pages (data entries) — Alternative 1.

Data Entries : i) Primary Pages (allocated at creation
time sequentially) or i) Overflow Pages (allocated during
Insertjons) '

Non-leaf
Pages

~

e
X
=1

e R e = =
[] Overflow ------- >] A o

page Primary pages 4-10

Outline of Operation

(AvaokoTtrnon /Asitoupyiacg)

Search: Start at root; use key comparisons to go to leaf.

Cost:L_log - Nl;F=#entries_per_indexPage+1, N=#leafpgs

* Recall that data Entries are allocated sequentially when the
tree Is created.

— Consequently, there is np need for "next-leaf-page’ pointers (i.e., we

can move from a leaf paéeRt%)tan adjacent page by calculating an

offset)

40

~N

P

20

33

/]

51

63

10*

15*

20*

27*

33*

37*

51*

S5* | ‘ 63*

97*

4-11

Inserting to an ISAM Index
(Elcaywyéec oto Eupetnpio ISAM)

Insert: Find the appropriate leaf data entry and assign it to
there. If full, allocate an overflow page and put it there

After Insertin% 23* 48* 41* 42* ...
ROOt ~—~a.

Index 40 |
Pages /X////// \\\\\\\\\Yk
20|33 51| (63
Primary \
Leaf 10¢ | 15¢ 20« | 27+ | | 33+ | 37+ 4o*| 46 51% | 55% | | g3 | 97+
Pages \
v)
Overflow 23 48* | 417
Pages |

4-12

Deletions from an ISAM Index
(Alaypagéc atro 1o Eupetnipio ISAM)

Delete: Find and remove from leaf; if overflow page gets
empty then de-allocate then given page. Never deallocate
primary leaf-pgges.

/ Root
BB (][=] e
40
v [h
o= o] =l & w(j-m =] [= / \
N T -
(=]] | —T
... Then Deleting / L / l \
42* 51* 97*
10* 15* 20* 27* 33* 37* 40* 46* 556* 63*
23+ 48* | 41*

0 Note that 51* appears in index levels, but not in leaf! Static tree structure:
inserts/deletes affect only leaf pages! ...Will be useful for concurrency control
(locking protocol)

-13

Lecture Outline
B+ Trees: Structure and Functions

* 10.3) Introduction to B+ Trees

« 10.4-10.6) B+Tree Functions:
Search / Insert / Delete with Query Optimization

and Execution

Examples Relajors) Qperior, _

Files and Access Methods

« 10.7) B+ Trees in Practice. Sattor Mamagemert

Disk Space Management

— Prefix-Key Compression
(MpoBepaTikn ZupTrieon KAEIOIWV)

— Bulk Loading B+Trees (Madikn
Eicaywyn Agdoucvwy)

4-14

Introduction to Tree Structures
(Elcaywyn o€ AevopikeEC AOMEC)

 We will study two Tree-based structures:

— ISAM: A static structure (does not grow or shrink).
e Suitable when changes are infrequently;
» Copes better with Locking Protocols

— B+ tree: A dynamic data structure which adjusts
efficiently under inserts and deletes.

« Most widely used tree structure in DBMS systems!

« Has similarly to ISAM, nodes with a high fan-out (f) (~133
children per node).

 Similar to a Btree but different...
— In a B+Tree, data entries are stored at the leaf level.

— A Btree allows search-key values to appear only once;
eliminates redundant storage of search keys (not suitable for DB
apps where more index entries yield better search performance) , ..

B+ Tree: Introductory Notes
(B+Tree: Elcaywyikég ETTiIonNuAvoeIg)

* Insert/delete at log N cost; keep tree balanced
(icoluyiousvo). (F = fanout, N = # |leaf pages)

 Minimum 50% occupancy (except for root). Each node
contains d <= m <= 2d entries. The parameter d is
called the order of the tree (Ba@uog Tou dEvOpou).

« Supports equality and range-searches (avalnmoeig
100TNTAG Kal dlaoTtripaTog) efficiently.

d:2, f:3 Index Entries

221134 (Direct search)

A

Data Entries
("Sequence set") 4-16

Example B+ Tree
(Mapadeiyua B+Tree)

Search begins at root, and key comparisons direct it to a
leaf (as in ISAM).

Search for 5*, 15*, all data entries >= 24* ...
ROOl\é

13 17 24 30

* | 3% | 5% | 7* 14*| 16* 19*| 20*| 22* 24* | 27*| 29* 33*| 34*| 38* | 39*

Based on the search for 15*, we know its not in the tree!

Note that leaf pages (TeppaTtikoi k6upor) are linked
together in a doubly-linked list (as opposed to ISAM).

That happens because ISAM nodes are allocated
sequentially during Index construction time
— consequently, no need to maintain the next prev-next-pointer.

17

B+ Trees in Practice
(B+Trees otnv lNpacn)
Typical order (d): 100 (ie100<=#children<=200)

Typical fanout (f) = 133 d=2, =3
— Typical fill-factor: 67% (133/200) / il
Typical capacities: l \

— Height 4: 1334 = 312,900,700 records
- Height 3: 1333 = 2,352,637 records

Can often hold top levels in buffer pool:
- Level 1 =133°=1 page = 8 Kbhytes
- Level 2 =1331=133 pages = ~1 MB (1064 KB)

- Level 3=1332=17,689 pages =~133 MB
(141,512KB)

4-18

1. Find correct leaf L.

2. Put data entry onto L
- If L has enough space, done'

B+ Tree Insertion Algorithm
(AAyoOpIBuoc Eicaywyncg oto B+Tree)

¢M

ROOT~

3 Assume

113

17

[2] =[] we Insert 8

EEEIrEEElrE

- Y
221 | | 241 27} 201 | | 33} 34] 38] 39f

- Else split (drauoipacn) L (into L and a new node L2)

» Redistribute (AvakaTtévelue) entries evenly between L and L2, copy
up (Avniypaen-fMpoég-Ta-Mavw) middle key.

* Insert index entry pointing to L2 into parent of L.

v8

2*

3*

5*

7*

L

/

5

« Copy up 5: cannot
just push-up 5 as
every data entry
needs to appear in a
leaf node

* 3*

Copy

up 5
4
*7*8

‘Problem: 5 won't fit

L2

in parent of L2. (see
next slide)

4-19

Copy

B+ Tree Insertion Algorithm
(AAyoOpIBuoc Eicaywyncg oto B+Tree)

3. A parent needs to recursively Push-Up (Mpow6&non-MNpog-

MNavw) the middle key until the insertion is successful i.e.,

No need to copy-up as the latter will generate redundant index
entries.

If Parent has enough space, done!

Else split (diauoipacn) Parent
» Redistribute (AvakaTtévelue) entries evenly, push up middle key.
4. Splits “grow” tree; root split increases height (Uyocg)

Tree growth: gets wider or one level taller at top.

13*

17~

24*

30*

up 5

Parent

\
N

~

—

e

/

17

A

Push (not
T copy)-up 17

* 1 13*

Parent

24*

30*

4-20

Parent2

Example B+ Tree After Inserting 8*
AtrotéAeopa Elocaywync 8*

Roo&A .
|(17
/' \
)
5 13 24 30

N b ~

SN s on N\

> 4

N,

3% | 5*)7* g+ 14+ 16+ 191 204 22 24+ 274 29* 33 344 38+[39*

Root was split => That lead to increase in height from 1 to 2.

Minimum occupancy (d, i.e., 50%) is guaranteed in both leaf and
iIndex pages splits (for root page this constraint is relaxed)
« Split occurs when adding 1 key to a node that is full (has 2d entries).
Thus we will end up with two nodes, one with d and one with d+1 entries.
Can avoid split by re-distributing entries between siblings —
(adeA@ikoi kOuPol); however, this is usually not done in practice. The

borrowing practice is adopted only during deletions (see next).
4-21

B+ Tree Deletion Algorithm
(AAyOpIBuoc Alaypa@nc atro B+Tree)

« Start at root, find leaf L where entry belongs.
— E.g., deleting 19 then 20

« Remove the entry K* (not respective index entries).
- If L is at least half-full, done! (e.g., after deleting 19%)

- If L has only d-1 entries, (e.g., after deleting 20%)

 Try to re-distribute, borrowing from sibling (adjacent node with
same parent as L). (e.g., borrow 24* and update)

« If re-distribution_ fails, merge L and sibling (see slide 12)

Root

17

T 4) Copy-Up
1| 5[] 13 24|| 30| | 27*to
/m \ R — — — replace 24
EERREERE 141 161 19k 20} 22 241 271 297 331 341 381 397
VANIVAN

D2) 3) Borrow 24* 42z

(Mapadsiypa Alaypagnc atmro B+Tree)

B+ Tree Deletion Example

AN

/ |

5

13

/

A\]
e \

17

x& A
* 14*| 16* 1

Initial Tree

24

30

/ﬂ

.

2% | 3* 5| 7*| 8 91 204 224 24*| 27* 29* 33* 344 38* 39*
Delete
29. 20 Root N .
’ - Final Tree
5 || 13 27 1)) 30
r N b N
2% | 3* 5+ 7+ | 8= 14*| 16* | 224 24 27*| 29 33+ 34+ 38*| 39*

4-23

B+ Tree Deletion Algorithm
(AAyOpIOuoc Alaypagn atro B+Tree)
* If re-distribution after delete fails then merge L and
sibling (e.qg., delete 24 => can’t borrow => merge)
 Now we also need to adjust parent of L (pointing
to L or sibling). (i.e., delete 27)

* Merge could propagate to root, decreasing height.
N C\

.l 2) 30

5| 14 W 34 _/
! L ~ %
*

/ﬂ\ }s ﬁ‘ /ﬁ‘ } 22% | 27 | 29 33* | 34* |38+ | 39*
21 37 51 71 81 14+ 16 2924 27 29* 33 34*3¢*39

delete 247 Merged {22} with
{27,29} 4-24

Merging propagates to sink
(H Zuyxwveuon diadidetal péxpl TN pida)

But ... occupancy Factor of L
dropped below 50% (d=2)
which is not acceptable. LE

Thus, L needs to be either i) u
merged (ocuyxwveuTei) with
its sibling {5,13} 2 P R T ot T e T o e s pye v e
or ii) redistributed

(avakaTavepnOei) with its

sibling (next slide)

Root

5 13 17 111 30

7 T

* | 3* 5* [7* | 8* 14* | 16* 22% | 27*| 29* 33*| 34*|38* | 39"

4-25

Summary of Bulk Loading
(Malikr] Eicaywyr] Aedopévwy)

Scenario: We want to construct a B+Tree on a pre-
existing collection (u@ioTapevn ocuAAoyn) of records

Option 1: multiple (individual) inserts.
- Slow and does not give sequential storage of leaves.

Option 2: Bulk Loading (Malikn Eicaywyn).
— Idea: Sort all data entries, insert pointer to first (leaf) page in a new (root).
— Effect: Splits occur only on the right-most path from the root to leaves.

- Advantages: i) Fewer |/Os during build and ii) Leaves will be stored
sequentially (and linked, of course).

—
e

N

Root .) . .
| Sorted pages of data entries not ver in B+ tree
i
.'rl;' * -7

_;.': — I - —

EL 4-“'5-’9- !1nﬂ11?l12-13- 20422+

23314 35436+ [38%41 |44+
| |

|

4-29

Bulk Loading with Example

(Madikr

locaywyn Je lMNap

Data entry pages not vet in

=

B+ tree

AOEIYUQ)

W

AV

EL RN L 6 1G*11*I 2™ 1%

20%22+

23% 31j 35#/36% Jﬂllﬁ

44+

Main Idea of Bulk Loading:
Splits occur only on the right-

Root TTao][] most path from the root the
\ leaf level
| 6 [E 12 ‘ Data entry pages not vet in B+ tree
R PN DN l -
3% 4= | 6%| 9% [10%/11# 1:*13-[20%22+ :3'311 35*35*‘ 33:]11* e

4-30

LSM Tree (Log-Structured
Merge Tree)

 LSM Is a data structure optimized for

write-heavy workloads

— Applications: IoT, DevOps monitoring, cybersecurity
analytic stacks / analytics require superfast &
efficient data ingestion.

— commonly used in key-balue stores (LevelDB,
RocksDB, and Cassandra)

— Commonly used in relational time series
databases (TSDB) like InfluxDB, Apache 10TDB,

TimescaleDB
Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996.

The log-structured merge-tree (LSM-tree). Acta Inf. 33, 4 (Jun 1996), 351-
385. https://doi.org/10.1007/s002360050048 4-31

LSM Trees (in action)

Users Users

Ingest Query

Router Router
send data o send queary to

an Ingester

get result back
a Querier

plecmeeaae s d
*—;:;E;% Catalog —
Ingester1 - Querier1
save / N\ ||| Object Storage
_ | data filas (Data) |

L W“’":\> .— /// >\ _
- |F / W - -

read/save read/save

O include secondary database models

39 systems in ranking, May 2022

Score
Database Model May Apr May
2022 2022 2021

Time Series, Multi-model @ 29.55 -0.47 +2.38
Time Serles, Multi-model @ 8.98 +0.21 40,72
Time Series 6.13 -0.18 +0.37
Time Series 5.46 +0.10 +0.90

Time Series, Multi-model @ 4.70 +0.14 +1,80

meta data # daia ﬁ|e7 \‘ C o Rank
= - May Apr May DBMS
2022 2022 2021
Compactori Garbage Collector 1. 1. 1. InfluxDB E3
2. 2 2. Kdb+
'-_I____ - 3. 3 3. Prometheus
4. 4 4. Graphite
5. 5. 5. TimescaleDB 2
6. 6. 6. Apache Druid
InfluxDB 3.0 SRt
[] 8. B, 8. OpenTSDB
9. 9. 4 11. DolphinDB
. - 10, 10. 9. Fauna
Written in Rust (successor for C/C++ 1. 11 410, GridDB@
12. 12. #16. QuestDB 3

with performance, type safety,
memory safety, and concurrency.)

Multi-model (& 3.00 -0.17 +0.33
Time Series 2.50 -0.08 +0.04
Time Serles 1.84 +0.02 +0.03
Time Series, Multi-model @ 1.65 +0.03 +0.75
Multi-model @ 1.36 -0.05 -0.12
Time Series, Multi-model |g@ 1.23 -0.05 +0.20
Time Series, Multi-model @ 1.19 +0.03 +0.74

4-32

https://www.influxdata.com/blog/influxdb-3-0-system-architecture/

LSM Trees: Overview

Write: Read:
— MemTable + WAL Bloom Filter + MemTable

— Flush/Compact in SSTable

RAM

MemTable

wWerite
Flush &
Compaction
v
¥
LQVCI o) l Index | SSTable | Mo jor Compaction
— = e i S

l Index I SSTab'eJ
i S, S SO O O S, S i el o, SO o, O, G s S S S S 3 e s ______..._.>

" =3
m Level 1 I Indesx I SsSTable I

Read

Bloom Filker -

I Index I SSToble

[Indes I SSTable]

I Indesx I SSToble |

DISK
https://medium.com/ @abhay.nimmagadda/lsm-trees-a-deep-dive-into-a-fu ndamental-data-structure-ug_%—

in-databases-e2622919ec6hb

LSM Trees: Writes

Memtable

— In-memory balanced tree (usually a Red-
Black Tree or Skip List)

— sorted order to facilitate fast reads
and efficient merging later.

Write-Ahead Log (WAL) for Durability
— Part of every DB offering recovery!

— We will focus later in the course on
this extensively!

When the memtable reaches a predefined size
(e.qg., 64MB), it is flushed to disk as an
|mmutable Sorted String Table (SSTable).

The SSTable is:Sorted — No need for additional indexing.

Immutable — No in-place updates (only compaction merges
them).

Stored alongside a Bloom filter (for fast existence checks) and
an index (for range lookups).

https://kflu.github.io/2018/02/09/2018-02-09-Ism-tree/

Memtable <

Memory

Disk

SSTables <

Level 0

Level 1

Level 2

4-34

LSM Trees: Write (Compaction)

buffer | | R41 15

o evelt () R4, 18
evel2 (D R 3ccbpactior
oo S R4, 21
e+ S R/ 1
https://disc-

projects.bu.edu/compactiona
ckground.html 4-35

LSM Trees: Write (Compaction)

Level @ insert 18 (a)
0 12*’1\' o
— s flush buffer & compact
& 1 2719 25 w1th the file in Level 1
2 [3]4]5]9912 G0

sn

@© full compaction: every compaction
job compacts all data from two

consecutive levels

—_—

| memory buffer

e TS T i

Level
0 12"1{\' i

@ insert 18 (b)

.,.-.-..—,—-.-

.___._ ‘\
1
1

© Level | saturated,;
oo 5] initiate compaction

@ npartial compaction: compacts equi-sized

files with overlapping key-range from
two consecutive levels

1 level capacity () file (SST) () file to compact [files after compaction

4-36

LSM Trees: Read

IsPresent(keyl) = NO
IsPresent(eyZ) = LIKELY S

1 v // \:::\
\ N ‘,‘c\. \\\
Bloom filter __ 2 A A — 4 1
(key presence check)
. crash log (key/value,
read(key2) i on-disk, append-only)
wrlte
5 4 3 2
index 1 index 2 index 3 i memtable
CRASH RECOVERY
(balanced BST: red black, AVL, .)
- v oy : ¥
SSTable 1 SSTable 2 SSTable 3 SSTable 4
e f !
MERGE & COMPACT l
merge sort by (key, -creation_time .
g y (key,) Time
>
Created by: ’@Iukefei

4-37

Time Series Database (TSDB)

« What is time series data?

— Time Series Is an ordered sequence of values of a variable
(e.g.temperature) at equally spaced time intervals (e.g. hourly).

« Whatis Time Series Databases?

— A Time Series Database (TSDB) is a database type which is
optimized for time series or time-stamped data.

 Benefits:

— Ingestion performance, range queries by timestamp,
compression, scalability, sgl support

The following query covers a 12-minute time range and groups results into 12-minute time intervals,

» SELECT COUNT ("water_level") FROM "h20_feet" WHERE "location"='coyote_creek' AND time >='2015-08-18T00:06:00Z'
AND time < '2015-08-18T00:18:00Z' GROUP BY time()
name: h2o_feet
time count

Source: http://tiny.cc/OjtSOOl

4-38

http://tiny.cc/0jt8001

Time Series Database (TSDB) ‘%

Rank

Aug Jul Aug
2024 2024 2023
1. 1. 1.
2. 2. 2,
3 3. 3.
4, 4. 4,
5. 5. 5.
6. 7. 4B
7. A 8. 4 10.
8, J6. b
9. . 9.
10. 10. 412,
11, 11, 7.
12 12, 11,
T3 ——13.___ 13
14, 14, # 20.

DEMS

InfluxDB E3
Kdb g3
Prometheus
Graphite
TimescaleDB
Apache Druid
QuestDB £}
DolphinDB
TDengine £}
GridDB g2
RRDtool
OpenTSDB
Fauna
Apache [IoTDB

Database Model

Time Series, Multi-model g
Multi-model g

Time Series

Time Series

Time Series, Multi-model |gj
Multi-model g

Time Series, Multi-model g
Multi-model |gj

Time Series, Multi-model g
Time Series, Multi-model |gj
Time Series

Time Series

Multi-model

Time Series

Score

2024
22.63

7.97
7:17
5.35
4.07
2.95
2.87
2.77
2.51
1.98
1.72
1.60
1.57
1.28

Jul
2024

-0.97
+0.39
-0.17
+0.30
+0.17
+0.02
+0.21
-0.85
+0.06
-0.01
-0.02
-0.02
+0.08
+0.04

Aug
2023

-7.24
-0.46
-0.68
-0.25
-1.05
-0.34
+0.34
-0.72
-0.17
-0.21
-1.58
-0.66
-0.22

+0.46
4-39

TSM (Time-Structured Merge

Tree)

InfluxDB Is based on TSM (Time-Structured
Merge Tree), very similar to LSM only more
optimized for timéseries data not key-values

Core Differences: TSM vs. LSM

name=—passengers

time minors | adults | location | driver
2015-08-18T'00:00:00Z | 1 2 1 doe
2015-08-18T'00:00:00Z | 2 2 1 jones
2015-08-18T00:06:00Z | 1 1 1 doe
2015-08-18T'00:06:00Z | 0 1 1 jones
2015-08-18T05:54:00Z | 0 2 2 doe
2015-08-18T06:30:00Z | 2 2 2 doe
2015-08-18T06:06:00Z | 3 1 2 jones
2015-08-18T'06:30:00Z | O 4 2 jones

Table 1: Sample time series dataset.

Aspect

Primary Use Case

Data Model

Compaction
Strategy

Compression

Indexing

Read
Optimization

Write-Ahead Log
(WAL)

Deletion Strategy

TSM (Time-Structured Merge Tree)

Optimized for time-series data (e.g.,
metrics, logs, loT).

Time-stamped data with a focus on
time ranges.

Time-based compaction to merge
data based on time intervals.

Advanced time-based compression
(e.g., Gorilla, delta encoding).

TSM index maps time ranges
efficiently.

Optimized for range queries over time
(e.q., last 24 hours).

WAL is tightly coupled with time-
series data ingestl‘on patterns.

Data expiration via retention policies
(automatic pruning).

LSM (Log-Structured Merge Tree)

General-purpose for key-value stores
(e.g., Cassandra, RocksDB).

Key-value pairs optimized for random
reads/writes.

Level-based or size-tiered compaction
to manage write amplification.

General compression algorithms without
time optimizations.

Indexes keys for fast lookups (often via
bloom filters).

Optimized for point lookups (specific
key retrieval).

WAL handles general transactional
durability.

Requires manual deletion or TTL
mechanisms.

4-40

Retention Policies in InfluxDB

A retention policy (RP) in InfluxDB defines how long data is kept in a database before it
Is automatically deleted. It also controls how many copies of the data are stored
(replication factor, mainly for InfluxDB Enterprise/Cluster setups).

Key Components of a Retention Policy:

1.Duration: How long InfluxDB keeps the data (e.g., 30d, 90d, INF for infinite).
2.Replication Factor: Number of copies of the data (relevant in clustered setups).
3.Shard Duration: Defines the time range covered by each shard. InfluxDB manages
shards internally, but you can customize this if needed.

4.Default Policy: One RP can be set as the default for a database. If no RP is specified
in a query, the default RP is used.

Create a Retention Policy:

CREATE RETENTION POLICY "30d_policy" ON "mydb" DURATION 30d REPLICATION
1 DEFAULT

«"30d_policy": Name of the retention policy.

**mydb": Target database.

*DURATION 30d: Data will be kept for 30 days.

*REPLICATION 1: One copy of the data (default for single-node setups).

DEFAULT: Makes this the default RP for the database. 441

Voo,
<ol

Sharding in InfluxDB ([

B
3

~ —_—
O
InfluxDB Database
nstance

ﬁ Tam PII&S.
(+index +cache +wal)

Datobases

4-42

InfluxDB Operators

Functions and Operators
Aggregation

1.MEAN

2.INTEGRAL

3.MODE

4. STANDARD DEVIATION
Selectors

1.PERCENTILE
2.SAMPLE
3.TOP

4.BOTTOM
Transformations

1.HISTOGRAM
2.MOVING AVERAGE

3.DERIVATIVE
Predictors

1.HOLT WINTERS
2.HOLT WINTERS WITH-FIT

Influx Query Language (InfluxQL)
To be covered in laboratory

> Like SQL but optimized for continuous
/ sliding window queries

https://docs.influxdata.com/influxdb/vl/qu
ery language/functions/

4-43

https://docs.influxdata.com/influxdb/v1/query_language/functions/
https://docs.influxdata.com/influxdb/v1/query_language/functions/

kdb+ Time series DB

« kdb+ is a column-based relational time series database (TSDB)
with in-memory (IMDB) abilities, developed and marketed
by KX.IXl The database is commonly used in high-frequency
trading (HFT) to store, analyze, process, and retrieve large data
sets at high speed.2l kdb+ has the ability to handle billions of
records and analyzes data within a database.!

DATA ACQUISITION
PROCESSES

kd b+ i REAL-TIME‘ d b

The intraday historical database (IHDB) is used b - DATABASE op

to store intraday data of the current day. T
Generally this is used for tables with large data L L i .
volumes. Data saved in the IHDB will already oATARRcE
be partitioned by sym and sorted by time. At © S

the end of day, all data will be written down to Jquery ik ! y
the HDB and deleted from the /HDB. N L

HISTORICAL

DATABASE

= | M (HDB)
»++» QUERIES

== DATA INGESTION h A

. day O
PR

https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Time_series_database
https://en.wikipedia.org/wiki/In-memory_database
https://en.wikipedia.org/wiki/Kx_Systems
https://en.wikipedia.org/wiki/Kdb%2B
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/High-frequency_trading
https://en.wikipedia.org/wiki/High-frequency_trading
https://en.wikipedia.org/wiki/Kdb%2B
https://en.wikipedia.org/wiki/Kdb%2B

Row Serialization

Apache Avro™ Is the leading serialization
format for record data, and first choice for
streaming data pipelines. It offers excellent
schema evolution, and has implementations for
the JVM (Java, Kotlin, Scala, ...), Python,
C/C++/C#, PHP, Ruby, Rust, JavaScript, and

/

even Perl.)
e
EEESEY.

Data
/

& Avro

4-45

AVRO Internals
Row Serialization)

Apache Avro is widely supported across
various systems, including:
SEQUENCEFILE WITH AND WITHOUTH Big Data & Storage Systems
COMPRESSION: *Apache Hadoop (HDFS, MapReduce)
*Apache Hive
*Apache HBase

*Apache Kafka (often used for schema-based
messaging)
*Apache Flink

SEQ + Version

*Apache Spark

....................... *Apache NiFi
Value Class Name
Databases
Boolean: Is *Google BigQuery
Compressed AWS Glue
Boolean: Is Block SEQUENCEFILE WITH BLOCK *Azure Data Lake
| (G COMPRESSION: Snowflake (supports reading Avro)
Compress Codec *PostgreSQL (via extensions like avro_fdw)
Class Name
WSS // PostgreSQL
Sync (new_UID() +
‘@' + time CREATE SERVER avro_server FOREIGN D+

WRAPPER avro_fdw;

CREATE FOREIGN TABLE avro_data (
id INTEGER,
name TEXT,
age INTEGER
) SERVER avro_server
OPTIONS (filename '/path/to/data.aé\llrﬁa;

Row Ingestion
(Data Funnels - xwvia)

Apache Kafka is an open-source distributed event
streaming platform used by thousands of companies for
high-performance data pipelines, streaming analytics, data
integration, and mission-critical applications.

Producer Producer } | F’mdu;:er‘

= 7
b
'y i
Katka Clustar
Topa Topic Topic
Fastins FI"H'Il) Pailini
IEEIlE i SHETH,
Patiinon B Paritian
I I L]
Consumer Consumar Consumar

kb Model S

> ML Kafka ... 4 Python
Streams /

— —* App Building o

Will be discussed again later in the course

	Slide 1: EPL646 – Advanced Topics in Databases
	Slide 2: Lecture Outline Tree-Structured Indexing
	Slide 3: Indexes (Access Methods) (Ευρετήρια Δευτερεύουσας Μνήμης)
	Slide 5: Data Entry k* Examples (Παραδείγματα Καταχώρησης k*)
	Slide 6: Introduction to Tree Structures (Εισαγωγή σε Δενδρικές Δομές)
	Slide 7: Structure of Nodes in Trees (Δομή Κόμβου σε Δένδρα)
	Slide 10: ISAM: Indexed Sequential Access Method
	Slide 11: Outline of Operation (Ανασκόπηση Λειτουργίας)
	Slide 12: Inserting to an ISAM Index (Εισαγωγές στο Ευρετήριο ISAM)
	Slide 13: Deletions from an ISAM Index (Διαγραφές από το Ευρετήριο ISAM)
	Slide 14: Lecture Outline B+ Trees: Structure and Functions
	Slide 15: Introduction to Tree Structures (Εισαγωγή σε Δενδρικές Δομές)
	Slide 16: B+ Tree: Introductory Notes (Β+Tree: Εισαγωγικές Επισημάνσεις)
	Slide 17: Example B+ Tree (Παράδειγμα B+Tree)
	Slide 18: B+ Trees in Practice (Β+Trees στην Πράξη)
	Slide 19: B+ Tree Insertion Algorithm (Αλγόριθμος Εισαγωγής στο B+Tree)
	Slide 20: B+ Tree Insertion Algorithm (Αλγόριθμος Εισαγωγής στο B+Tree)
	Slide 21: Example B+ Tree After Inserting 8* Αποτέλεσμα Εισαγωγής 8*
	Slide 22: B+ Tree Deletion Algorithm (Αλγόριθμος Διαγραφής απο B+Tree)
	Slide 23: B+ Tree Deletion Example (Παράδειγμα Διαγραφής από B+Tree)
	Slide 24: B+ Tree Deletion Algorithm (Αλγόριθμος Διαγραφή απο B+Tree)
	Slide 25: Merging propagates to sink (Η Συγχώνευση διαδίδεται μέχρι τη ρίζα)
	Slide 29: Summary of Bulk Loading (Μαζική Εισαγωγή Δεδομένων)
	Slide 30: Bulk Loading with Example (Μαζική Εισαγωγή με Παράδειγμα)
	Slide 31: LSM Tree (Log-Structured Merge Tree)
	Slide 32: LSM Trees (in action)
	Slide 33: LSM Trees: Overview
	Slide 34: LSM Trees: Writes
	Slide 35: LSM Trees: Write (Compaction)
	Slide 36: LSM Trees: Write (Compaction)
	Slide 37: LSM Trees: Read
	Slide 38: Time Series Database (TSDB)
	Slide 39: Time Series Database (TSDB)
	Slide 40: TSM (Time-Structured Merge Tree)
	Slide 41: Retention Policies in InfluxDB
	Slide 42: Sharding in InfluxDB
	Slide 43: InfluxDB Operators
	Slide 44: kdb+ Time series DB
	Slide 45: Row Serialization
	Slide 46: AVRO Internals (Row Serialization)
	Slide 47: Row Ingestion (Data Funnels - χωνιά)

