
4-1
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

EPL646 – Advanced Topics in Databases

Lecture 4

Indexing II: Tree-Structured

Indexing and ISAM Indexes
Chap. 10.1-10.8: Ramakrishnan & Gehrke

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl446

Department of Computer Science

University of Cyprus

4-2
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Lecture Outline
Tree-Structured Indexing

• Note: In prior lectures we gave an
overview of Storage and Indexing. In
this and the following lecture we will
explore Indexing in more detail.

• 10.1) Introduction to Tree Indexes

• 10.2) The ISAM Index

– Structure of Nodes in Trees,

– Binary Search over Sorted Files,

– Binary vs. N-ary Search Trees,

– ISAM: Indexed Sequential Access Method
(Outline, Search, Insert, Delete, Examples)

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

4-3
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Indexes (Access Methods)
(Ευρετήρια Δευτερεύουσας Μνήμης)

• An index is a data structure that has index
records that point to certain data records.

• An index can optimize certain kinds of
retrieval operations (depending on the index).

• Definitions
– Index Page (Σελίδες Ευρετηρίου) vs. Data Pages (Σελίδες

Δεδομένων): Index Pages store index records to data
records. Both reside on disk because we might have many
of these pages!

– Data Record (Εγγραφή Δεδομένων): Stores the actual
data e.g., (59,Mike,3.14) .

– Index Record (Εγγραφή Ευρετηρίου): Stores the RID of
another index record (then called index entry) or a data
record (then called data entry)

Index Page

Data Page

Index Page

4-5
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Data Entry k* Examples
(Παραδείγματα Καταχώρησης k*)

• Alternative 1: <k>

• Alternative 2: <k, RID>

• Alternative 3: <k, [RID,…,RID]>

59, Mike, 3.14 Index Data Entry

59, RID#10

59 Mike 3.14

Index Data Entry

RID#10

Data Record

59, RID#10, RID#61, #RID82

59 Jim 53.14

Index Data Entry

Data Record59 Mike 3.14 59 Chris 33.14

Results in a
Index File Organization!

RID#10 RID#61 RID#82

4-6
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Introduction to Tree Structures

(Εισαγωγή σε Δενδρικές Δομές)
• We will study two Tree-based structures:

– ISAM: A static structure (does not grow or shrink).

• Suitable for situations where the target relation does not

change frequently;

• Copes better with Locking Protocols (explained later),

because the index/data entries are statically allocated, thus

are not required to be locked during concurrent access.

– B+ tree: A dynamic data structure that adjusts efficiently under

inserts and deletes.

• Most widely used tree structure in DBMS systems because it

copes efficiently with updates! and because the cost for range

and equality searches is good.

• Will be covered subsequently in this lecture!

4-7
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Structure of Nodes in Trees
(Δομή Κόμβου σε Δένδρα)

• Same Structure for ISAM and B+Trees (we shall

utilize Alt.1 with keyonly unless otherwise noted)

• M Keys and M+1 Pointers to children (either

index entries or data entries)

• Example with M=2

P0 K 1 P 1 K 2 P 2 K m P m

index entry

10* 15* 20* 27* 33* 37*

20 33

4-10
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

ISAM: Indexed Sequential Access Method

Non-leaf

Pages

Pages

Overflow
page

Primary pages

Leaf

• A simple tree structure utilized by DBMS systems

• Constructed Statically at index creation time.

• Consists of Non-leaf (index entries, allocated at creation

time) and Leaf pages (data entries) – Alternative 1.

• Data Entries : i) Primary Pages (allocated at creation

time sequentially) or ii) Overflow Pages (allocated during

insertions)

4-11
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Outline of Operation
(Ανασκόπηση Λειτουργίας)

• Search: Start at root; use key comparisons to go to leaf.

Cost:∟log F N˩;F=#entries_per_indexPage+1, N=#leafpgs

• Recall that data Entries are allocated sequentially when the

tree is created.

– Consequently, there is no need for `next-leaf-page’ pointers (i.e., we

can move from a leaf page to an adjacent page by calculating an

offset)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

4-12
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Inserting to an ISAM Index
(Εισαγωγές στο Ευρετήριο ISAM)

Root

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

23* 48* 41*

42*

After Inserting 23*, 48*, 41*, 42* ...

Insert: Find the appropriate leaf data entry and assign it to

there. If full, allocate an overflow page and put it there

4-13
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Deletions from an ISAM Index
(Διαγραφές από το Ευρετήριο ISAM)

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

... Then Deleting

42*, 51*, 97*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

23* 48* 41*

42*

Note that 51* appears in index levels, but not in leaf! Static tree structure:

inserts/deletes affect only leaf pages! …Will be useful for concurrency control

(locking protocol)

Delete: Find and remove from leaf; if overflow page gets

empty then de-allocate then given page. Never deallocate

primary leaf pages.

4-14
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Lecture Outline
B+ Trees: Structure and Functions

• 10.3) Introduction to B+ Trees

• 10.4-10.6) B+Tree Functions:
Search / Insert / Delete with
Examples

• 10.7) B+ Trees in Practice.

– Prefix-Key Compression
(Προθεματική Συμπίεση Κλειδιών)

– Bulk Loading B+Trees (Μαζική
Εισαγωγή Δεδομένων)

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

4-15
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Introduction to Tree Structures
(Εισαγωγή σε Δενδρικές Δομές)

• We will study two Tree-based structures:

– ISAM: A static structure (does not grow or shrink).

• Suitable when changes are infrequently;

• Copes better with Locking Protocols

– B+ tree: A dynamic data structure which adjusts

efficiently under inserts and deletes.

• Most widely used tree structure in DBMS systems!

• Has similarly to ISAM, nodes with a high fan-out (f) (~133

children per node).

• Similar to a Btree but different…

– In a B+Tree, data entries are stored at the leaf level.

– A Btree allows search-key values to appear only once;

eliminates redundant storage of search keys (not suitable for DB

apps where more index entries yield better search performance)

4-16
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Tree: Introductory Notes
(Β+Tree: Εισαγωγικές Επισημάνσεις)

• Insert/delete at log F N cost; keep tree balanced

(ισοζυγισμένο). (F = fanout, N = # leaf pages)

• Minimum 50% occupancy (except for root). Each node

contains d <= m <= 2d entries. The parameter d is

called the order of the tree (βαθμός του δένδρου).

• Supports equality and range-searches (αναζητήσεις

ισότητας και διαστήματος) efficiently.

Index Entries

Data Entries

("Sequence set")

(Direct search)3422

d=2, f=3

4-17
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Example B+ Tree
(Παράδειγμα B+Tree)

• Search begins at root, and key comparisons direct it to a

leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

•

• Based on the search for 15*, we know its not in the tree!

• Note that leaf pages (τερματικοί κόμβοι) are linked

together in a doubly-linked list (as opposed to ISAM).

• That happens because ISAM nodes are allocated

sequentially during Index construction time

– consequently, no need to maintain the next prev-next-pointer.

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

4-18
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Trees in Practice
(Β+Trees στην Πράξη)

• Typical order (d): 100 (ie100<=#children<=200)

• Typical fanout (f) = 133

– Typical fill-factor: 67% (133/200)

• Typical capacities:

– Height 4: 1334 = 312,900,700 records

– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:

– Level 1 = 1330 = 1 page = 8 Kbytes

– Level 2 = 1331 = 133 pages = ~1 MB (1064 KB)

– Level 3 = 1332 = 17,689 pages = ~133 MB

(141,512KB)

3422

d=2, f=3

4-19
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Tree Insertion Algorithm
(Αλγόριθμος Εισαγωγής στο B+Tree)

1. Find correct leaf L.

2. Put data entry onto L.

– If L has enough space, done!

– Else split (διαμοίραση) L (into L and a new node L2)
• Redistribute (Ανακατένειμε) entries evenly between L and L2, copy

up (Αντιγραφή-Πρός-Τα-Πάνω) middle key.

• Insert index entry pointing to L2 into parent of L.

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3* 5* 7*

8

L

8

8

• Copy up 5: cannot

just push-up 5 as

every data entry

needs to appear in a

leaf node
•Problem: 5 won’t fit

in parent of L2. (see

next slide)

2* 3* 5* 7* 8*

5

L L2

Copy

up 5

Assume

we insert 8

4-20
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Tree Insertion Algorithm
(Αλγόριθμος Εισαγωγής στο B+Tree)

3. A parent needs to recursively Push-Up (Προώθηση-Προς-

Πάνω) the middle key until the insertion is successful i.e.,

– No need to copy-up as the latter will generate redundant index

entries.

– If Parent has enough space, done!

– Else split (διαμοίραση) Parent
• Redistribute (Ανακατένειμε) entries evenly, push up middle key.

4. Splits “grow” tree; root split increases height (ύψος)

– Tree growth: gets wider or one level taller at top.

5* 13* 24* 30*

17

Parent Parent2

13* 17* 24* 30*

Parent

Copy

up 5

Push (not

copy)-up 17

4-21
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Example B+ Tree After Inserting 8*

Αποτέλεσμα Εισαγωγής 8*

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

• Root was split => That lead to increase in height from 1 to 2.

• Minimum occupancy (d, i.e., 50%) is guaranteed in both leaf and

index pages splits (for root page this constraint is relaxed)

• Split occurs when adding 1 key to a node that is full (has 2d entries).

Thus we will end up with two nodes, one with d and one with d+1 entries.

• Can avoid split by re-distributing entries between siblings –

(αδελφικοί κόμβοι); however, this is usually not done in practice. The

borrowing practice is adopted only during deletions (see next).

4-22
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Tree Deletion Algorithm

(Αλγόριθμος Διαγραφής απο B+Tree)

• Start at root, find leaf L where entry belongs.

– E.g., deleting 19 then 20

• Remove the entry Κ* (not respective index entries).

– If L is at least half-full, done! (e.g., after deleting 19*)

– If L has only d-1 entries, (e.g., after deleting 20*)

• Try to re-distribute, borrowing from sibling (adjacent node with

same parent as L). (e.g., borrow 24* and update)

• If re-distribution fails, merge L and sibling (see slide 12)

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

X

1) 3) Borrow 24*

4) Copy-Up

27* to

replace 24

X

2)

4-23
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Tree Deletion Example

(Παράδειγμα Διαγραφής από B+Tree)

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Delete

19, 20

Initial Tree

Final Tree

4-24
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Tree Deletion Algorithm

(Αλγόριθμος Διαγραφή απο B+Tree)

• If re-distribution after delete fails then merge L and

sibling (e.g., delete 24 => can’t borrow => merge)

• Now we also need to adjust parent of L (pointing

to L or sibling). (i.e., delete 27)

• Merge could propagate to root, decreasing height.

2* 3*

Root

17

30

14*16* 33*34*38*39*

135

7*5* 8* 22*24*

27

27* 29*

30

22* 27* 29* 33* 34* 38* 39*

delete 24* Merged {22} with

{27,29}

L

X

1)

L

2)

X

4-25
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Merging propagates to sink

(Η Συγχώνευση διαδίδεται μέχρι τη ρίζα)
• But … occupancy Factor of L

dropped below 50% (d=2)

which is not acceptable.

• Thus, L needs to be either i)

merged (συγχωνευτεί) with

its sibling {5,13}

• or ii) redistributed

(ανακατανεμηθεί) with its

sibling (next slide)

17 30

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
135

L

2* 3*

Root

17

14* 16*

135

7*5* 8* 22* 27*

30

33* 34* 38* 39*29*

4-29
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Summary of Bulk Loading

 (Μαζική Εισαγωγή Δεδομένων)
• Scenario: We want to construct a B+Tree on a pre-

existing collection (υφιστάμενη συλλογή) of records

• Option 1: multiple (individual) inserts.
– Slow and does not give sequential storage of leaves.

• Option 2: Bulk Loading (Μαζική Εισαγωγή).
– Idea: Sort all data entries, insert pointer to first (leaf) page in a new (root).

– Effect: Splits occur only on the right-most path from the root to leaves.

– Advantages: i) Fewer I/Os during build and ii) Leaves will be stored

sequentially (and linked, of course).

4-30
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Bulk Loading with Example

 (Μαζική Εισαγωγή με Παράδειγμα)

Main Idea of Bulk Loading:

Splits occur only on the right-

most path from the root the

leaf level

4-31
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

LSM Tree (Log-Structured

Merge Tree)

• LSM is a data structure optimized for

write-heavy workloads
– Applications: IoT, DevOps monitoring, cybersecurity

analytic stacks / analytics require superfast &

efficient data ingestion.

– commonly used in key-balue stores (LevelDB,

RocksDB, and Cassandra)

– Commonly used in relational time series

databases (TSDB) like InfluxDB, Apache IoTDB,

TimescaleDB
Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996.

The log-structured merge-tree (LSM-tree). Acta Inf. 33, 4 (Jun 1996), 351–

385. https://doi.org/10.1007/s002360050048

4-32
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

LSM Trees (in action)

InfluxDB 3.0
Written in Rust (successor for C/C++

with performance, type safety,

memory safety, and concurrency.)

https://www.influxdata.com/blog/influxdb-3-0-system-architecture/

4-33
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

LSM Trees: Overview

https://medium.com/@abhay.nimmagadda/lsm-trees-a-deep-dive-into-a-fundamental-data-structure-used-

in-databases-e2622919ec6b

• Write:

– MemTable + WAL

– Flush/Compact in SSTable

Read:
Bloom Filter + MemTable

4-34
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

LSM Trees: Writes

https://kflu.github.io/2018/02/09/2018-02-09-lsm-tree/

• Memtable
– in-memory balanced tree (usually a Red-

Black Tree or Skip List)

– sorted order to facilitate fast reads

and efficient merging later.

• Write-Ahead Log (WAL) for Durability

– Part of every DB offering recovery!

– We will focus later in the course on

this extensively!

• When the memtable reaches a predefined size

(e.g., 64MB), it is flushed to disk as an

immutable Sorted String Table (SSTable).
• The SSTable is:Sorted → No need for additional indexing.

• Immutable → No in-place updates (only compaction merges

them).

• Stored alongside a Bloom filter (for fast existence checks) and

an index (for range lookups).

Memory

Disk

4-35
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

LSM Trees: Write (Compaction)

https://disc-

projects.bu.edu/compactionary/ba

ckground.html

R4, 15

R4, 18

R4, 21

R4, 16

R3, 16

4-36
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

LSM Trees: Write (Compaction)

4-37
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

LSM Trees: Read

4-38
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Time Series Database (TSDB)

• What is time series data?

– Time Series is an ordered sequence of values of a variable

(e.g.temperature) at equally spaced time intervals (e.g. hourly).

• What is Time Series Databases?

– A Time Series Database (TSDB) is a database type which is

optimized for time series or time-stamped data.

• Benefits:

– ingestion performance, range queries by timestamp,

compression, scalability, sql support

Source: http://tiny.cc/0jt8001

The following query covers a 12-minute time range and groups results into 12-minute time intervals,
➢ SELECT COUNT("water_level") FROM "h2o_feet" WHERE "location"='coyote_creek' AND time >= '2015-08-18T00:06:00Z'

AND time < '2015-08-18T00:18:00Z' GROUP BY time(12m)

➢ name: h2o_feet

➢ time count
➢ ---- -----

➢ 2015-08-18T00:00:00Z 1 <----- Note that this timestamp occurs before the start of the query's time range 2015-08-
18T00:12:00Z 1

http://tiny.cc/0jt8001

4-39
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Time Series Database (TSDB)

4-40
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

TSM (Time-Structured Merge

Tree)
InfluxDB is based on TSM (Time-Structured
Merge Tree), very similar to LSM only more
optimized for timeseries data not key-values

4-41
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Retention Policies in InfluxDB
A retention policy (RP) in InfluxDB defines how long data is kept in a database before it

is automatically deleted. It also controls how many copies of the data are stored

(replication factor, mainly for InfluxDB Enterprise/Cluster setups).

Key Components of a Retention Policy:

1.Duration: How long InfluxDB keeps the data (e.g., 30d, 90d, INF for infinite).

2.Replication Factor: Number of copies of the data (relevant in clustered setups).

3.Shard Duration: Defines the time range covered by each shard. InfluxDB manages

shards internally, but you can customize this if needed.

4.Default Policy: One RP can be set as the default for a database. If no RP is specified

in a query, the default RP is used.

Create a Retention Policy:

CREATE RETENTION POLICY "30d_policy" ON "mydb" DURATION 30d REPLICATION

1 DEFAULT

•"30d_policy": Name of the retention policy.

•"mydb": Target database.

•DURATION 30d: Data will be kept for 30 days.

•REPLICATION 1: One copy of the data (default for single-node setups).

•DEFAULT: Makes this the default RP for the database.

4-42
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Sharding in InfluxDB

4-43
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

InfluxDB Operators

Functions and Operators
Aggregation
1.MEAN

2.INTEGRAL

3.MODE

4.STANDARD DEVIATION
Selectors
1.PERCENTILE

2.SAMPLE

3.TOP

4.BOTTOM
Transformations
1.HISTOGRAM

2.MOVING AVERAGE

3.DERIVATIVE
Predictors
1.HOLT WINTERS

2.HOLT WINTERS WITH-FIT

Influx Query Language (InfluxQL)
To be covered in laboratory

> Like SQL but optimized for continuous

/ sliding window queries

https://docs.influxdata.com/influxdb/v1/qu

ery_language/functions/

https://docs.influxdata.com/influxdb/v1/query_language/functions/
https://docs.influxdata.com/influxdb/v1/query_language/functions/

4-44
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

kdb+ Time series DB
• kdb+ is a column-based relational time series database (TSDB)

with in-memory (IMDB) abilities, developed and marketed

by KX.[1] The database is commonly used in high-frequency

trading (HFT) to store, analyze, process, and retrieve large data

sets at high speed.[2] kdb+ has the ability to handle billions of

records and analyzes data within a database.[3]

The intraday historical database (IHDB) is used
to store intraday data of the current day.
Generally this is used for tables with large data
volumes. Data saved in the IHDB will already
be partitioned by sym and sorted by time. At
the end of day, all data will be written down to
the HDB and deleted from the IHDB.

https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Time_series_database
https://en.wikipedia.org/wiki/In-memory_database
https://en.wikipedia.org/wiki/Kx_Systems
https://en.wikipedia.org/wiki/Kdb%2B
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/High-frequency_trading
https://en.wikipedia.org/wiki/High-frequency_trading
https://en.wikipedia.org/wiki/Kdb%2B
https://en.wikipedia.org/wiki/Kdb%2B

4-45
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Row Serialization

• Apache Avro is the leading serialization

format for record data, and first choice for

streaming data pipelines. It offers excellent

schema evolution, and has implementations for

the JVM (Java, Kotlin, Scala, …), Python,

C/C++/C#, PHP, Ruby, Rust, JavaScript, and

even Perl.

4-46
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

AVRO Internals

(Row Serialization)

// PostgreSQL

CREATE SERVER avro_server FOREIGN DATA

WRAPPER avro_fdw;

CREATE FOREIGN TABLE avro_data (

id INTEGER,

name TEXT,

age INTEGER

) SERVER avro_server

OPTIONS (filename '/path/to/data.avro');

Apache Avro is widely supported across
various systems, including:

Big Data & Storage Systems

•Apache Hadoop (HDFS, MapReduce)

•Apache Hive

•Apache HBase
•Apache Kafka (often used for schema-based

messaging)

•Apache Flink

•Apache Spark

•Apache NiFi

Databases

•Google BigQuery

•AWS Glue

•Azure Data Lake
•Snowflake (supports reading Avro)

•PostgreSQL (via extensions like avro_fdw)

4-47
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Row Ingestion

(Data Funnels - χωνιά)

Apache Kafka is an open-source distributed event
streaming platform used by thousands of companies for
high-performance data pipelines, streaming analytics, data
integration, and mission-critical applications.

Will be discussed again later in the course

…

	Slide 1: EPL646 – Advanced Topics in Databases
	Slide 2: Lecture Outline Tree-Structured Indexing
	Slide 3: Indexes (Access Methods) (Ευρετήρια Δευτερεύουσας Μνήμης)
	Slide 5: Data Entry k* Examples (Παραδείγματα Καταχώρησης k*)
	Slide 6: Introduction to Tree Structures (Εισαγωγή σε Δενδρικές Δομές)
	Slide 7: Structure of Nodes in Trees (Δομή Κόμβου σε Δένδρα)
	Slide 10: ISAM: Indexed Sequential Access Method
	Slide 11: Outline of Operation (Ανασκόπηση Λειτουργίας)
	Slide 12: Inserting to an ISAM Index (Εισαγωγές στο Ευρετήριο ISAM)
	Slide 13: Deletions from an ISAM Index (Διαγραφές από το Ευρετήριο ISAM)
	Slide 14: Lecture Outline B+ Trees: Structure and Functions
	Slide 15: Introduction to Tree Structures (Εισαγωγή σε Δενδρικές Δομές)
	Slide 16: B+ Tree: Introductory Notes (Β+Tree: Εισαγωγικές Επισημάνσεις)
	Slide 17: Example B+ Tree (Παράδειγμα B+Tree)
	Slide 18: B+ Trees in Practice (Β+Trees στην Πράξη)
	Slide 19: B+ Tree Insertion Algorithm (Αλγόριθμος Εισαγωγής στο B+Tree)
	Slide 20: B+ Tree Insertion Algorithm (Αλγόριθμος Εισαγωγής στο B+Tree)
	Slide 21: Example B+ Tree After Inserting 8* Αποτέλεσμα Εισαγωγής 8*
	Slide 22: B+ Tree Deletion Algorithm (Αλγόριθμος Διαγραφής απο B+Tree)
	Slide 23: B+ Tree Deletion Example (Παράδειγμα Διαγραφής από B+Tree)
	Slide 24: B+ Tree Deletion Algorithm (Αλγόριθμος Διαγραφή απο B+Tree)
	Slide 25: Merging propagates to sink (Η Συγχώνευση διαδίδεται μέχρι τη ρίζα)
	Slide 29: Summary of Bulk Loading (Μαζική Εισαγωγή Δεδομένων)
	Slide 30: Bulk Loading with Example (Μαζική Εισαγωγή με Παράδειγμα)
	Slide 31: LSM Tree (Log-Structured Merge Tree)
	Slide 32: LSM Trees (in action)
	Slide 33: LSM Trees: Overview
	Slide 34: LSM Trees: Writes
	Slide 35: LSM Trees: Write (Compaction)
	Slide 36: LSM Trees: Write (Compaction)
	Slide 37: LSM Trees: Read
	Slide 38: Time Series Database (TSDB)
	Slide 39: Time Series Database (TSDB)
	Slide 40: TSM (Time-Structured Merge Tree)
	Slide 41: Retention Policies in InfluxDB
	Slide 42: Sharding in InfluxDB
	Slide 43: InfluxDB Operators
	Slide 44: kdb+ Time series DB
	Slide 45: Row Serialization
	Slide 46: AVRO Internals (Row Serialization)
	Slide 47: Row Ingestion (Data Funnels - χωνιά)

