
3-1
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

EPL646 – Advanced Topics in Databases

Lecture 3

Storage II: Disks and Files
Chap. 9.1-9.7: Ramakrishnan & Gehrke

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

Department of Computer Science

University of Cyprus

3-2
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Lecture Outline
Overview of Storage and Indexing

• Note: In lecture 2 we gave an overview of Storage and
Indexing. In this lecture we will explore Storage (Disks
& Files) in more detail.

• 9.1-9.2) Disks & RAID
– Components (Συστατικά) of a Disk

– Accessing (Προσπέλαση) a Disk Block.

– Arranging (Διάταξη) Pages on Disk

– RAID Basic Concepts, Levels: 0 to 5 and 0+1

• 9.3) Disk Space Manager (Διαχειριστής Χώρου Δίσκου)

• 9.4) Buffer Manager (Διαχειριστής Κρυφής Μνήμης)
– Definitions (Pin/Unpin, Dirty-bit), Replacement Policies (LRU, MRU,

clock), Sequential Flooding, Buffer in OS

• 9.5-9.7) File, Page and Record Formats
– File Structure (Linked-List/Directory-based), Page Structure with

Fixed/Variable-length records, Record Structure (Fixed-
length/Variable-length), System Catalog

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

3-3
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Context of next slides

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

3-4
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Magnetic Disks

(Μαγνητικοί Δίσκοι)
• DBMS stores information on (“hard”) disks.

• This has major implications (επιπτώσεις) for DBMS design!

– READ: transfer data from disk => main memory (RAM).

– WRITE: transfer data from RAM => disk.

• Both are high-cost operations, relative to in-memory (RAM)

operations, so must be planned carefully!

• We already mentioned that Data is stored and retrieved in

units called pages (or disk blocks).

• Unlike RAM, time to retrieve a disk page varies depending

upon location on disk.

– Therefore, relative placement (τοποθέτηση σε εγγυήτητα)

of pages (utilized together) on disk has major impact on

DBMS performance!

3-5
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Magnetic Disks

(Μαγνητικοί Δίσκοι)

arm head

platter

Controller

spindle

SSD (Solid

State Disk)

HDD (Hard

Disk Drive)

3-7
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Accessing a Disk Block
(Προσπέλαση Μπλοκ Δίσκου)

• Access Time (Χρόνος Πρόσβασης) of a Disk Block (Page) =

+ Seek time (Χρόνος Αναζήτησης): Time to move arms to position

disk head on track.

+ Rotational Delay (Καθυστέρηση Περιστροφής): Waiting for head

to rotate to expected block (upto 15K rpm)

+ Transfer Time (Χρόνος Μεταφοράς): Time to move data to/from

disk surface).

• Seek time and Rotational Delay dominate.

– Seek time varies from about 1 to 20msec

– Rotational delay varies from 0 to 10msec

– Transfer rate is about 1msec per 4KB page

• Key to lower I/O cost: reduce seek/rotation

delays!

http://tbn2.google.com/images?q=tbn:dDbS_rtpKF80_M:http://talkelab.ucsd.edu/head-disk/images/disk1b.jpg

seek

Rotation @ 90rps

fa
s
te

r

http://images.google.com/imgres?imgurl=http://talkelab.ucsd.edu/head-disk/images/disk1b.jpg&imgrefurl=http://talkelab.ucsd.edu/head-disk/&usg=__S4FA9hzonC_2Zp3uSAzif-zYPl8=&h=355&w=512&sz=69&hl=el&start=3&um=1&tbnid=dDbS_rtpKF80_M:&tbnh=91&tbnw=131&prev=/images?q=disk&um=1&hl=el&rlz=1T4GGLJ_en___CY282&sa=N

3-9
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Context of next slides

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

3-10
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

RAID: Redundant Array of Independent* Disks

(Εφεδρικές Συστοιχίες Ανεξαρτήτων Δίσκων)

• Disk Array: Arrangement of several disks that
gives abstraction of a Single, Large Disk!

• Goals:

– Increase Performance (Επίδοση);
• Why? Disk: a mechanical component that is inherently slow!

– Increase Reliability (Αξιοπιστία).
• Why? Mechanical and Electronic Components tend to fail!

* Historically

used to be

Inexpensive

3-11
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

RAID: Key Concepts

(RAID: Βασικές Αρχές)

A. Striping (Διαχωρισμός): the splitting of data across
more than one disk using a round-robin (i mod disks);

• Improving Performance (Επίδοση) and Load
Balancing (εξισορρόπηση φόρτου)!

• NOT improving Reliability (αξιοπιστία)! (if one disk
fails all data is useless)

B. Mirroring (Κατοπτρισμός) or Shadowing (Σκίαση):
the copying of data to more than one disk

– Improving Reliability (Αξιοπιστία)!

– Improving Read Performance but NOT Write
Performance (same as 1 disk!) / Wasting space

C. Error Detection/Correction (Εντοπισμός/Διόρθωση
Σφαλμάτων): the storage of additional information,
either on same disks or on redundant disk, allowing
the detection (parity, CRC) and/or correction
(Hamming/Reed-Solomon) of failures.

1
2
3
4

1
3

2
4

Disk A

Disk C

Disk A

1
2
3
4

1
2
3
4

Disk BDisk A

A) Striping

B) Mirroring

1
2
3
4

1
2
3
4

Disk BDisk A

C) Error Detection
1

RAID levels combine the above basic concepts: 0

(striping), 1 (mirroring), 4,5 (parity)

3-17
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Context of next slides

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

3-18
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Buffer Management in a DBMS
 (Διαχειριστής Κρυφής Μνήμης)

• Data must be in RAM for DBMS to operate on it!

• A <pageid,dirty,pin> is maintained for each frame#

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated

by replacement policy

Ορολογία

Buffer Frame =

DBMS Page =

Disk Block

3-19
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

When a Page is Requested ...
(Όταν αιτείται μια σελίδα…)

Case 1: Page is in Pool

– Pin (επικόλληση, αύξηση μετρητή) the page and

return its address to the higher layer (file layer).

Case 2: Page NOT in Pool

Step 1 (Find): Choose a frame (page) for

replacement (A page is a candidate for

replacement iff pin_count = 0). If no such page exist

then page cannot be loaded into BM.

Step 2 (Save): If frame (page) is dirty (has been

modified by a write), then write it to disk

Step 3 (Load): Read requested page into chosen

frame, pin page and return its address.

3-20
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)Sequential flooding

More on Buffer Management

• Unpinning a page: Higher levels (requestors of page) i)

unpin a page (when not needed anymore) and ii) set the
dirty-bit to indicate the case a page has been modified.

• Replacement Policy: Policy that defines the buffer frame
than needs to be removed from the pool:

– LRU (using queue, remove the oldest from pool),

– MRU (using stack, remove newest from pool),

– RANDOM (randomly)

• Sequential flooding (Γραμμική Υπερχείλιση): Situation

caused by LRU + repeated sequential scans (σάρωση).

buffer frames < # pages in

file means each page request

causes an I/O.

1 1 2

3 2 3 1 2 1

1? miss 2? miss 3? miss

1? miss 2? miss 3? miss

3-22
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Context of next slides

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

3-23
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Files of Records
(Aρχείο από Εγγραφές)

• Page or block is OK when doing I/O, but higher

levels of DBMS operate on records, and files of

records .

• FILE: A collection of pages, each containing a

collection of records. Must support:

– insert/delete/modify record

– read a particular record (specified using record id)

– scan all records (possibly with some conditions on

the records to be retrieved)

3-24
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Unordered (Heap) Files
(Μη-διατεταγμένα Αρχεία Σωρού)

• Simplest file structure contains records in no

particular order.

• As file grows and shrinks, disk pages are

allocated and de-allocated.

• To support record level operations, we must:

– keep track of the pages in a file

– keep track of free space on pages

– keep track of the records on a page

• There are many alternatives for keeping

track of this. The following discussion

presents these alternatives.

File

Header

Page Page

Page
Record Record

Record Record

Context

SlotDir

3-25
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Keeping Track of Empty Pages

(Βρίσκοντας τις Σελίδες με Χώρο)

• Linked-List Organization: Each page contains 2 `pointers’ plus data.

• Every time we delete some data from a page it is added to the Free-

Space list

• Drawbacks:

– All pages might end up in the Free-space list (every page might have a few empty

bytes)

– Linked list too big to fit into main memory, the next approach solves this problem!

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Pages with
Free Space

Full Pages

Solution Α

File
Header

Page Page

Page
Record Record

Record Record

Context

SlotDir

3-26
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Keeping Track of Empty Pages
(Βρίσκοντας τις Σελίδες με Χώρο)

• Directory-based Organization (Οργάνωση με

Ευρετήριο)

– The entry for a page can include the number of free bytes on the

page. That is useful to find if a page has enough space.

• The directory itself is a linked-list of directory pages;
– Much smaller than linked list of all File pages used in previous solution!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORYSolution B

File

Header

Page Page

Page
Record Record

Record Record

Context

3-27
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Managing Slots on a Page with

Fixed-Length Records

* Packed: If record Is deleted move the last record on

the page into the vacated slot

* That changes RID (PageID, SlotID),which is not acceptable!

* Unpacked/Bitmap: Keep M-Bitmap which indicates

which slots are vacant

Slot 1
Slot 2

Slot N

.

N M10. . .

M ... 3 2 1

PACKED UNPACKED, BITMAP
Slot 1
Slot 2

Slot N

Free

Space

Slot M

11

Number of records number

of slots

File
Header

Page Page

Page
Record Record

Record Record

Context

SlotDir

3-28
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Managing Slots on a Page

with Variable Records

Slotted Organization:

Suitable for Variable-size Records (slots never moved)

Can move records on page without changing RID so,

attractive for fixed-length records too.

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1

20 16 24 N

slots

pageID

slotID

Length of

record

File
Header

Page Page

Page
Record Record

Record Record

Context

SlotDir

Compacted

Area with
memmove()

3-29
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Record Formats: Fixed Length
(Δομή Εγγραφής: Σταθερού Μήκους)

• Information about field types same for all records in a
file; stored in system catalogs (κατάλογος συστήματος).

• Finding i’th field (or record) does not require scan of
file, but the position of the file (or record) can be
computed using simple offset arithmetic.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Field I

(Attribute)

Fixed-length Record

File
Header

Page Page

Page
Record Record

Record Record

Context

SlotDir

Li = Length

of field i

3-30
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Record Formats: Variable Length
(Δομή Εγγραφής: Μεταβλητού Μήκους)

• When a record has a variable length (occurs with fields of variable

size, e.g., strings)

• Two alternative formats (# fields is fixed):

Second solution offers direct access to i’th field, efficient storage, fast access

4 $ $ $ $
Field

Count Fields Delimited by Special Symbols (e.g., NUL)

Field1 Field2 Field3 Field4

F1 F2 F3 F4

Array of Field Offsets

The drawback of the above format is that searching for a field

requires to step over all fields. A better approach follows

File
Header

Page Page

Page
Record Record

Record Record

Context

SlotDir

Integer offsets

3-31
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

SQL Server Data Types Example

(Characterization)

bigint 8

Integer from -2^63 (-9 223

372 036 854 775 808) to

2^63-1 (9 223 372 036

854 775 807).

int 4

Integer from -2^31 (-2 147

483 648) to 2^31-1 (2 147

483 647).

smallint 2
Integer from -2^15 (-32

768) to 2^15-1 (32 767).

tinyint 1 Integer from 0 to 255.

bit 1 bit Integer 0 or 1.

decimal(precision, scale) 5-17

Numeric data type with

fixed precision and scale

(accuracy 1-38, 18 by

default and scale 0-p, 0 by

default).

numeric 5-17
Same as data type

'decimal'.

Financial data type from -

2^63 (-922 337 203 685

3-32
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

System Catalogs
(Κατάλογος Συστήματος)

• For each relation a DBMS stores the following:

– name, file name, file structure (e.g., Heap file)

– for each attribute: attribute name and type

– for each index: index name

– integrity constraints

• For each index:

– structure (e.g., B+ tree) and search key fields

• For each view:

– view name and definition

• Plus statistics, authorization, buffer pool size, etc.

Catalogs are themselves stored as relations!

3-33
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

System Catalog in PostgreSQL
Catalog Name Purpose

pg_aggregate aggregate functions

pg_am index access methods

pg_amop access method operators

pg_amproc
access method support

procedures

pg_attrdef column default values

pg_attribute
table columns ("attributes",

"fields")

pg_cast casts (data type conversions)

pg_class
tables, indexes, sequences

("relations")

pg_constraint

check constraints, unique /

primary key constraints,
foreign key constraints

pg_conversion
encoding conversion

information

pg_database
databases within this database

cluster

pg_depend
dependencies between

database objects

pg_description
descriptions or comments on

database objects

pg_group groups of database users

pg_index additional index information

pg_inherits table inheritance hierarchy

pg_language languages for writing functions

pg_largeobject large objects

pg_listener asynchronous notification

pg_namespace namespaces (schemas)

pg_opclass
index access method operator

classes

pg_operator operators

pg_proc functions and procedures

pg_rewrite query rewriter rules

pg_shadow database users

pg_statistic optimizer statistics

pg_trigger triggers

pg_type data types

For example, CREATE DATABASE inserts a row into the pg_database catalog --

and creates the database on disk.

Catalog Name Purpose

3-34
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Example of Attribute Table in a Typical

System Catalog

attr_name rel_name type position
attr_name Attribute_Cat string 1
rel_name Attribute_Cat string 2
type Attribute_Cat string 3
position Attribute_Cat integer 4
sid Students string 1
name Students string 2
login Students string 3
age Students integer 4
gpa Students real 5
fid Faculty string 1
fname Faculty string 2
sal Faculty real 3

Position

within

relation

3-37
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Column Files
(Apache Parquet & Apache Arrow)

• Apache Parquet is an open-source, standard,
column-oriented file format that grew out of the
Hadoop era of big-data.
– typically used with big data processing frameworks like Apache

Spark, Apache Hive, and Apache Drill. It was created by Twitter

and Cloudera and is part of the Apache Hadoop ecosystem.

• Apache Arrow is a universal columnar format and multi-language toolbox
for fast data interchange and in-memory analytics. It contains a set of
technologies that enable data systems to efficiently store, process, and
move data.

Row Column Column + Groups

More on groups, compression in later sections

3-38
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Pandas (Python)

• Pandas or Dask/Polars (distributed and parallel

Pandas) provides data structures for in-memory

analytics

• Pandas loads the data into memory for processing.
– it takes advantage of the in-memory data structure (like DataFrame) to

perform operations efficiently.

import pandas as pd

Creating a DataFrame

data = {

'Name': ['Alice', 'Bob', 'Charlie'],

'Age': [25, 30, 35],

'City': ['New York', 'Los Angeles',

'Chicago']

}

df = pd.DataFrame(data)

Display the DataFrame

print(df)

import dask.dataframe as dd

Read the large CSV file using Dask

df = dd.read_csv('large_file.csv')

Calculate the average salary

average_salary = df['Salary'].mean().compute()

Print the result

print("Average Salary:", average_salary)

import dask.dataframe as dd

Read the Parquet file using

Dask

df =

dd.read_parquet('large_file.par

quet')

Calculate the average salary

using Dask's mean function

average_salary =

df['Salary'].mean().compute()

Print the result

print("Average Salary:",

average_salary)

import polars as pl

Creating a DataFrame

data = {

'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35],

'City': ['New York', 'Los Angeles', 'Chicago']

}

df = pl.DataFrame(data)

Display the DataFrame

print(df)

3-39
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Parquet File Format

4-byte magic number "PAR1"

<Column 1 Chunk 1>

<Column 2 Chunk 1>

...

<Column N Chunk 1>

<Column 1 Chunk 2>

<Column 2 Chunk 2>

...

<Column N Chunk 2>

...

<Column 1 Chunk M>

<Column 2 Chunk M>

...

<Column N Chunk M>

File Metadata

4-byte length in bytes of file metadata (little endian)

4-byte magic number "PAR1"

3-40
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Parquet File Format

• File Metadata is

written after the data to

allow for single pass

writing.

• Readers are expected

to first read the file

metadata to find all

the column chunks

they are interested in.

• The columns chunks

should then be read

sequentially.

https://github.com/apache/parquet-format?tab=readme-ov-file

3-41
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Parquet Codecs
UNCOMPRESSED

No-op codec. Data is left uncompressed.

SNAPPY

A codec based on the Snappy compression format. If any ambiguity arises when
implementing this format, the implementation provided by Google Snappy library is
authoritative.

GZIP

A codec based on the GZIP format (not the closely-related "zlib" or "deflate" formats)
defined by RFC 1952. If any ambiguity arises when implementing this format, the
implementation provided by the zlib compression library is authoritative.

Readers should support reading pages containing multiple GZIP members, however, as
this has historically not been supported by all implementations, it is recommended
that writers refrain from creating such pages by default for better interoperability.

LZO

A codec based on or interoperable with the LZO compression library.

BROTLI

A codec based on the Brotli format defined by RFC 7932. If any ambiguity arises when
implementing this format, the implementation provided by the Brotli compression
library is authoritative.

LZ4

A deprecated codec loosely based on the LZ4 compression algorithm, but with an
additional undocumented framing scheme. The framing is part of the original Hadoop
compression library and was historically copied first in parquet-mr, then emulated
with mixed results by parquet-cpp.

It is strongly suggested that implementors of Parquet writers deprecate this
compression codec in their user-facing APIs, and advise users to switch to the newer,
interoperable LZ4_RAW codec.

ZSTD

A codec based on the Zstandard format defined by RFC 8478. If any ambiguity arises
when implementing this format, the implementation provided by the ZStandard
compression library is authoritative.

LZ4_RAW

[C65] "Efficient Exploration of

Telco Big Data with

Compression and Decaying",

Constantinos Costa, Georgios

Chatzimilioudis, Demetrios
Zeinalipour-Yazti, Mohamed F.

Mokbel, Proceedings of the

IEEE 33rd International

Conference on Data

Engineering (ICDE'17), IEEE
Computer Society, pp. 1332-

1343, April 19-22, 2017, San

Diego, CA, USA,

DOI: 10.1109/ICDE.2017.175, I

SBN: 978-1-5090-6543-1, 2017.

https://github.com/google/snappy/blob/master/format_description.txt
https://github.com/google/snappy/
https://tools.ietf.org/html/rfc1952
https://zlib.net/
http://www.oberhumer.com/opensource/lzo/
https://tools.ietf.org/html/rfc7932
https://github.com/google/brotli
https://github.com/google/brotli
https://tools.ietf.org/html/rfc8478
https://facebook.github.io/zstd/
https://facebook.github.io/zstd/
https://www.cs.ucy.ac.cy/~dzeina/papers/icde17-spate.pdf
https://www.cs.ucy.ac.cy/~dzeina/papers/icde17-spate.pdf
https://www.cs.ucy.ac.cy/~dzeina/papers/icde17-spate.pdf
http://icde2017.sdsc.edu/
https://doi.org/10.1109/ICDE.2017.175

3-42
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Pandas: Dataframe Only

(no data file)
• sudo pip install pandas

• sudo pip install pyarrow

Import pandas package

import pandas as pd

Define a dictionary containing employee data

data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
'Age':[27, 24, 22, 32],

'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
'Qualification':['Msc', 'MA', 'MCA', 'Phd']}

Convert the dictionary into DataFrame
df = pd.DataFrame(data)

select two columns
print(df[['Name', 'Qualification']])
python3 b.py

Name Qualification

0 Jai Msc

1 Princi MA

2 Gaurav MCA

3 Anuj Phd

Pandas operates in-memory, the

entire DataFrame must fit into the

system's RAM for processing. 

Data Processing Scenario (Not

storage)

Pandas DataFrame is two-dimensional size-mutable,
potentially heterogeneous tabular data structure with
labeled axes (rows and columns).

3-43
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Pandas: CSV into Dataframe

importing pandas package

import pandas as pd

making data frame from csv file

data = pd.read_csv("nba.csv", index_col ="Name")

retrieving row by loc method

first = data.loc["Avery Bradley"]

print(first, "\n\n\n”)

Again Main-Memory

only 

Team Boston Celtics

Number 0.0

Position PG

Age 25.0

Height 6-2

Weight 180.0

College Texas

Salary 7730337.0

Name: Avery Bradley, dtype: object

wget https://media.geeksforgeeks.org/wp-

content/uploads/nba.csv

$ head nba.csv

Name,Team,Number,Position,Age,Height,Weight,College,Salary

Avery Bradley,Boston Celtics,0.0,PG,25.0,6-2,180.0,Texas,7730337.0

Jae Crowder,Boston Celtics,99.0,SF,25.0,6-6,235.0,Marquette,6796117.0

John Holland,Boston Celtics,30.0,SG,27.0,6-5,205.0,Boston University,

R.J. Hunter,Boston Celtics,28.0,SG,22.0,6-5,185.0,Georgia State,1148640.0

https://media.geeksforgeeks.org/wp-content/uploads/nba.csv
https://media.geeksforgeeks.org/wp-content/uploads/nba.csv

3-44
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Pandas: Dataframe into Parquet

Format
import pandas as pd

import pyarrow as pa

import pyarrow.parquet as pq

Create a sample DataFrame

data = {

"id": [1, 2, 3],

"name": ["Alice", "Bob", "Charlie"],

"age": [25, 30, 35]

}

df = pd.DataFrame(data)

Convert the DataFrame to a PyArrow Table

table = pa.Table.from_pandas(df)

Write the table to a Parquet file

pq.write_table(table, 'example.parquet')

print("Parquet file written successfully!")

vgate@vgate:~/pandas$ hexdump -C example.parquet | head

00000000 50 41 52 31 15 04 15 30 15 2e 4c 15 06 15 00 12 |PAR1...0..L.....|

00000010 00 00 18 04 01 00 09 01 3c 02 00 00 00 00 00 00 |........<.......|

00000020 00 03 00 00 00 00 00 00 00 15 00 15 14 15 18 2c |...............,|

00000030 15 06 15 10 15 06 15 06 1c 18 08 03 00 00 00 00 |................|

00000040 00 00 00 18 08 01 00 00 00 00 00 00 00 16 00 28 |...............(|

00000050 08 03 00 00 00 00 00 00 00 18 08 01 00 00 00 00 |................|

00000060 00 00 00 00 00 00 0a 24 02 00 00 00 06 01 02 03 |.......$........|

00000070 24 00 26 e4 01 1c 15 04 19 35 00 06 10 19 18 02 |$.&......5......|

00000080 69 64 15 02 16 06 16 da 01 16 dc 01 26 52 26 08 |id..........&R&.|

00000090 1c 18 08 03 00 00 00 00 00 00 00 18 08 01 00 00 |................|

Data Written in efficient format

(i.e., binary or compressed

binary) on secondary storage ☺

However, there are no row

updates => rewriting the whole

file is inefficient vs. traditional

DBs 

So Parquet should be the input /

output from a typical DB (rather

than JSON, XML, TSV, CSV) as

opposed to the data layer.

3-45
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Parquet DB Connectivity

• pg_parquet: An Extension to Connect Postgres and
Parquet

-- copy the table to a parquet file

CREATE TABLE product_example (…));

COPY product_example TO '/tmp/product_example.parquet' (format 'parquet',
compression 'gzip');

• SQL Server 2022 (16.x) can virtualize data from parquet

files. This process allows the data to stay in its original

location, but can be queried from a SQL Server instance

with T-SQL commands, like any other table.

– Polybase: your SQL Server instance to query data with T-SQL directly
from SQL Server, Oracle, Teradata, MongoDB, Hadoop clusters,
Cosmos DB, and S3-compatible object storage without separately
installing client connection software.

3-46
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Geo (Spatial) Formats

• GeoParquet: GeoParquet (Open Geospatial

Consortium) adds interoperable geospatial types

(e.g. Point, Line, Polygon) to Parquet.

• ESRI: ESRI is a commercial vendor for GIS data,

in particular analysis of geospatial data objects

either as online maps or using desktop tooling

along with cloud pipelines. Huge amount of

formats for ESRI File Geodatabase (GDB)

• PostGIS/Postgres (Relational)

• PostGeese/DuckDB (Embedded OLAP)

• Apache Sedona: This is a cluster computing

system for processing large-scale spatial data.

PostGIS/Postgres

GeoParquet

3-47
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Delta Lake Format

• A data lake is a system or repository of data stored in its natural/raw
format, usually object blobs or files.

– Structured (rows and columns), Semi-structured (CSV, logs, XML, JSON), and
unstructured data (emails, documents, PDFs), and binary data (images, audio,
video).

• Parquet data lakes are inefficient because they require

rewriting entire Parquet files even to update only a single

row/

• The Delta Table format is built on top of Parquet, but

adds advanced features like ACID transactions,

versioning, and schema evolution.

– It's part of the Delta Lake project (originally developed by

Databricks)

3-48
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Lakehouse Table Formats

• Lakehouse table formats:

– Delta Lake, Apache Iceberg and Apache Hudi

– (can be thought like Parquet files for data lakes

allowing row updates with ACID properties)

Deletion Vectors: No-Regrets Row-Level Updates in Delta Lake

by Bart Samwel (Databricks).

https://icde2024.github.io/invited.html

3-49
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

DuckDB – Embedded,

Columnar, OLAP
• DuckDB: A Columnar OLAP Database
(SIGMOD’19)

Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable Analytical Database. In

Proceedings of the 2019 International Conference on Management of Data (SIGMOD '19).
Association for Computing Machinery, New York, NY, USA, 1981–1984.
https://doi.org/10.1145/3299869.3320212

3-50
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Optimized Row Columnar

(ORC Files for Big Data)
• ORC (Optimized Row Columnar) is a

popular columnar storage format used

in SQL-based big data systems like
– Apache Hive, Apache Spark, and Presto. However,

traditional relational databases (e.g., MySQL,
PostgreSQL, SQL Server) do not natively support ORC

tables. ORC is mainly used in distributed computing
environments like Apache Hadoop.

• An ORC file contains groups of

row data called stripes, along with

auxiliary information in a file footer.

– At the end of the file a postscript

holds compression parameters and

the size of the compressed footer.
https://cwiki.apache.org/confluence/display/hive/languag

emanual+orc CREATE TABLE my_table (id INT, name

STRING) STORED AS ORC;

Similar to Parquet but largely forgotten due to Parquet

3-51
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

PAX (Parallel Adaptive eXchange)

(Hybrid Row/Column File Format)

• PAX is a storage format designed to optimize

the performance of columnar data processing,

but it’s somewhat less well-known compared to

other columnar formats like ORC and Parquet.

– PAX is often considered a hybrid between row-

based and column-based formats.

– It organizes data in blocks, and within each block, it

stores data for multiple columns, but each block has

multiple tuples (rows) of data.

– https://www.the-paper-trail.org/post/2013-01-30-

columnar-storage/

https://www.the-paper-trail.org/post/2013-01-30-columnar-storage/
https://www.the-paper-trail.org/post/2013-01-30-columnar-storage/

	Slide 1: EPL646 – Advanced Topics in Databases
	Slide 2: Lecture Outline Overview of Storage and Indexing
	Slide 3: Context of next slides
	Slide 4: Magnetic Disks (Μαγνητικοί Δίσκοι)
	Slide 5: Magnetic Disks (Μαγνητικοί Δίσκοι)
	Slide 7: Accessing a Disk Block (Προσπέλαση Μπλοκ Δίσκου)
	Slide 9: Context of next slides
	Slide 10: RAID: Redundant Array of Independent* Disks (Εφεδρικές Συστοιχίες Ανεξαρτήτων Δίσκων)
	Slide 11: RAID: Key Concepts (RAID: Βασικές Αρχές)
	Slide 17: Context of next slides
	Slide 18: Buffer Management in a DBMS (Διαχειριστής Κρυφής Μνήμης)
	Slide 19: When a Page is Requested ... (Όταν αιτείται μια σελίδα…)
	Slide 20: More on Buffer Management
	Slide 22: Context of next slides
	Slide 23: Files of Records (Aρχείο από Εγγραφές)
	Slide 24: Unordered (Heap) Files (Μη-διατεταγμένα Αρχεία Σωρού)
	Slide 25: Keeping Track of Empty Pages (Βρίσκοντας τις Σελίδες με Χώρο)
	Slide 26: Keeping Track of Empty Pages (Βρίσκοντας τις Σελίδες με Χώρο)
	Slide 27: Managing Slots on a Page with Fixed-Length Records
	Slide 28: Managing Slots on a Page with Variable Records
	Slide 29: Record Formats: Fixed Length (Δομή Εγγραφής: Σταθερού Μήκους)
	Slide 30: Record Formats: Variable Length (Δομή Εγγραφής: Μεταβλητού Μήκους)
	Slide 31: SQL Server Data Types Example (Characterization)
	Slide 32: System Catalogs (Κατάλογος Συστήματος)
	Slide 33: System Catalog in PostgreSQL
	Slide 34: Example of Attribute Table in a Typical System Catalog
	Slide 37: Column Files (Apache Parquet & Apache Arrow)
	Slide 38: Pandas (Python)
	Slide 39: Parquet File Format
	Slide 40: Parquet File Format
	Slide 41: Parquet Codecs
	Slide 42: Pandas: Dataframe Only (no data file)
	Slide 43: Pandas: CSV into Dataframe
	Slide 44: Pandas: Dataframe into Parquet Format
	Slide 45: Parquet DB Connectivity
	Slide 46: Geo (Spatial) Formats
	Slide 47: Delta Lake Format
	Slide 48: Lakehouse Table Formats
	Slide 49: DuckDB – Embedded, Columnar, OLAP
	Slide 50: Optimized Row Columnar (ORC Files for Big Data)
	Slide 51: PAX (Parallel Adaptive eXchange) (Hybrid Row/Column File Format)

