
Windows systems Programming
Windows Sockets

Marios Papas
Neophytos Eliades

Historical Background
Proposed by Martin Hall (JSB Software) in
October 1991
Platform

Windows family OS
First specification edition by

Martin Hall, Mark Towfiq (Microdyne)
Geoff Arnold (Sun Microsystems)
Henry Sanders (Microsoft)

Version 1.0 (June 1992)
Defined the basic operation of Winsock
Only TCP/UDP mentioned

Historical Background

Alternatives
Anonymous pipes and named pipes
Common Object Request Broker Architecture (CORBA)
Distributed Computing Environment (DCE)
Message Bus (MBUS) (specified in RFC 3259)
ONC RPC
XML XML-RPC or SOAP
ZeroC's Internet Communications Engine (ICE)

Why use Winsock

Windows Inter-process communication
Remotely
Locally

Porting of code already written for Berkeley Sockets is
straightforward.
Windows systems easily integrate into TCP/IP networks.
Works for both IPv4 and the emerging IPv6.
Sockets can be used with Windows overlapped I/O

Allow scalability on large number of active clients
Sockets can be treated as file handles

Like UNIX allows sockets used as file descriptors

Why use Winsock

Supports Datagrams (UDP)
Connectionless
Unreliable small messages

Supports transport protocol access
Internet Control Message Protocol (ICMP)
Internet Group Management Protocol (IGMP)

Why use Winsock
Supports Reliably Delivered Messages

Multiple peers
Connectionless
Reliably message delivery (loss notification)

Supports Reliable sequenced packet service
Two peers
Connection oriented
Reliable message delivery

Supports Reliable stream-oriented service (TCP)
Two peers
Connection based
Reliable bytes stream delivery

Installation

Winsock library standard with windows
System.Dll

How To use winsock – Socket Class
Include like any other class

Imports System.Net.Sockets (VB2005)
using System.Net.Sockets; (C#)
using namespace System::Net::Sockets; (C++)
import System.Net.Sockets.*; (Java)

No individual Compilation needed

Hello World! (Sender)
Private Sub SendHello(ByVal server As String, ByVal port As Integer)

Dim s As Socket = Nothing
Dim hostEntry As IPHostEntry = Nothing

' Get host related information.
hostEntry = Dns.GetHostEntry(server)

' Loop through the AddressList to obtain the supported AddressFamily.
' Avoid unexpected IP address(not belonging in the family) (Like IPv6)

Dim address As IPAddress
For Each address In hostEntry.AddressList

Dim endPoint As New IPEndPoint(address, port)
Dim tempSocket As New Socket(endPoint.AddressFamily,

SocketType.Stream,ProtocolType.Tcp)
Try

tempSocket.Connect(endPoint)
Catch ex As Exception

MsgBox("Error Connecting to " + address.ToString)
End Try
If tempSocket.Connected Then

s = tempSocket
Exit For

End If
Next address

Hello World! (Sender)
'If s is not null

If Not s Is Nothing Then
'Set up variables and String to write to the server.

Dim ascii As System.Text.Encoding =
System.Text.Encoding.ASCII

Dim msg As String = "Hello World"
Dim memstream As New MemoryStream(200)
Dim bw As New BinaryWriter(memstream)
bw.Write(msg)
Dim bytesSent As [Byte]() = memstream.ToArray

' Send request to the server.
s.Send(bytesSent, bytesSent.Length,

SocketFlags.None)
End If

End Sub

Hello World! (Receiver)
Private Sub getHello(ByVal port As Integer)

Try
listenSocket = New Socket(AddressFamily.InterNetwork,

SocketType.Stream,ProtocolType.Tcp)
' bind the listening socket to the port

Dim hostIP As IPAddress = IPAddress.Any
Dim ep As New IPEndPoint(hostIP, port)
listenSocket.Bind(ep)

' start listening (max number of listening sockets 10)
listenSocket.Listen(10)
While (True)

dataSocket = listenSocket.Accept()
' The following will block until the page is transmitted.

Dim bytesReceived() As Byte
Dim bytes As Integer = 0
Dim msg As String = ""

Do
bytes = dataSocket.Receive(bytesReceived, bytesReceived.Length, 0)
msg = msg + System.Text.Encoding.ASCII.GetString(bytesReceived,0,bytes)

Loop While bytes > 0
MsgBox("Received:" + vbNewLine + msg)

End While
Catch ex As Exception

MsgBox(ex.ToString)
End Try

End Sub

Socket Class Constructor
Public Sub New (addressFamily As AddressFamily,

socketType As SocketType,
protocolType As ProtocolType)

AddressFamily types:
AppleTalk AppleTalk address.
InterNetwork Address for IP version 4
InterNetworkV6 Address for IP version 6

SocketType
Dgram (UDP)
Raw (ICMP)
Rdm (Broadcast)
Seqpacket (Reliable Connection Oriented)
Stream Supports (Reliable Connection Oriented)

Socket Class Constructor

ProtocolType
Icmp Internet Control Message Protocol.
IcmpV6 Internet Control Message Protocol for
IPv6.
IP Internet Protocol.
IPv4 Internet Protocol version 4.
IPv6 Internet Protocol version 6 (IPv6).
Tcp Transmission Control Protocol.
Udp User Datagram Protocol.

Socket Class Common Methods

Public Sub Bind (localEP As EndPoint)
Associates a Socket with a local endpoint.

Public Sub Listen (backlog As Integer)
Places a Socket in a listening state.

Public Function Accept As Socket
Creates a new Socket for a newly created
connection.

Socket Class Common Methods

Public Function Send (buffer As Byte(),
size As Integer,
socketFlags As SocketFlags)
As Integer

Sends the specified number of bytes of data to a
connected Socket

Public Function Receive (buffer As Byte(),
socketFlags As SocketFlags)
As Integer

Receives data from a bound Socket into a receive
buffer

Send – Receive Ping
Private Sub SendPing(ByVal server As String)
' Get host related information.

Dim hostEntry As IPHostEntry = Dns.GetHostEntry(server)
Dim localHost As IPHostEntry =System.Net.Dns.GetHostByName

(System.Net.Dns.GetHostName())
Dim ipepServer As System.Net.IPEndPoint = New

System.Net.IPEndPoint(hostEntry.AddressList(0), 0)
Dim epServer As System.Net.EndPoint = CType(ipepServer,

System.Net.EndPoint)
Dim epFrom As System.Net.EndPoint = New

System.Net.IPEndPoint(localHost.AddressList(0), 0)
Dim replyBuffer(255) As Byte

'Set up variables and String to write to the server.
Dim bytesSent As [Byte]() = makePingPacket()
Dim tempSocket As New Socket(AddressFamily.InterNetwork,

SocketType.Raw,ProtocolType.Icmp)

Send – Receive Ping
If Not tempSocket Is Nothing Then

Try
' Send ping

tempSocket.SendTo(bytesSent, 0, bytesSent.Length,
SocketFlags.None,ipepServer)

' Receive ping
tempSocket.ReceiveFrom(replyBuffer, SocketFlags.None,

epServer)
If replyBuffer(20) = 0 Then

tslSend.Text = "ICMP Ping Successfully sent to" +
txtRemoteHost.Text +":" + txtRemotePort.Text

Else
tslSend.Text = "Error Sending ICMP PING to " +

txtRemoteHost.Text + ":“ + txtRemotePort.Text
End If

Catch ex As Exception
MsgBox("Error you must be administrator to have

priviledges to send a ping")
End Try

End If
End Sub

UDP Send
If Not tempSocket Is Nothing Then

Try
' Send ping

tempSocket.SendTo(bytesSent, 0, bytesSent.Length,
SocketFlags.None,ipepServer)

' Receive ping
tempSocket.ReceiveFrom(replyBuffer, SocketFlags.None,

epServer)
' Check if ping succeeded or not

If replyBuffer(20) = 0 Then
tslSend.Text = "ICMP Ping Successfully sent to" +

txtRemoteHost.Text +":" + txtRemotePort.Text
Else

tslSend.Text = "Error Sending ICMP PING to " +
txtRemoteHost.Text + ":“ + txtRemotePort.Text

End If
Catch ex As Exception

MsgBox("Error you must be administrator to have
priviledges to send a ping")

End Try
End If

End Sub

UDP Send
Private Sub SendUDP(ByVal server As String, ByVal port As Integer)

Dim s As Socket = Nothing
Dim hostEntry As IPHostEntry = Nothing

' Get host related information.
hostEntry = Dns.GetHostEntry(server)

' Loop through the AddressList to obtain the supported AddressFamily.
' Avoid unexpected IP address(not belonging in the family) (Like IPv6)

Dim address As IPAddress
For Each address In hostEntry.AddressList

Dim endPoint As New IPEndPoint(address, port)
Dim tempSocket As New Socket(endPoint.AddressFamily,

SocketType.Dgram,ProtocolType.Udp)
tempSocket.Connect(endPoint)
If tempSocket.Connected Then

s = tempSocket
Exit For

End If
Next address

UDP Send
If Not s Is Nothing Then

'Set up variables and String to write to the server.
Dim i As Integer
pbReceive.Style = ProgressBarStyle.Blocks
For i = 0 To 1000

Dim memstream As New MemoryStream(10)
Dim bw As New BinaryWriter(memstream)
bw.Write(i)
Dim bytesSent As [Byte]() = memstream.ToArray

' Send request to the server.
s.Send(bytesSent, bytesSent.Length,

SocketFlags.None)
tslSend.Text = "Sent Packet with Data " +

i.ToString
pbSend.Value = i

Next i
End If

End Sub

UDP Receive
Private Sub handleConnectionUDP()

Try
'Retrieve data from scoket

Dim inc(200) As Byte
Dim msg As Integer
Dim i = 0

While i < 1000
dataSocket.Receive(inc, 200, SocketFlags.None)
Dim memstream As New MemoryStream(inc)
Dim br As New BinaryReader(memstream)
msg = br.ReadInt32
tslReceive.Text = "Received Packet " + msg.ToString
pbReceive.Value = msg

End While
Catch ex As Exception

MsgBox(ex.ToString)
End

Finally
tslReceive.Text = "Listening for incoming connections ..."

End Try
End Sub

UDP Receive
Private Sub acceptConnections()

Try
Dim port As Integer = Convert.ToInt32(txtLocalPort.Text)
listenSocket = New Socket(AddressFamily.InterNetwork, SocketType.Stream,

ProtocolType.Tcp)
' bind the listening socket to the port

Dim hostIP As IPAddress = IPAddress.Any
Dim ep As New IPEndPoint(hostIP, port)
listenSocket.Bind(ep)

' start listening
listenSocket.Listen(10)
While (True)

dataSocket = listenSocket.Accept()
Dim child As New Threading.Thread(AddressOf handleConnection)
child.Start()

End While
Catch ex1 As Threading.ThreadAbortException

'empty
Catch ex2 As Exception
MsgBox(ex2.ToString)

End Try
End Sub

Conclusions

Winsock control provides relatively
straightforward “Internet” programming.
Winsock is the foundation of Internet capability in
Microsoft’s OS, allowing browsers, FTP, chat and
terminal applications
Strings can be sent between client and server
through a chat program.
Can upload data to a web server and view “real-
time” data acquisition with browsers!

Bibliography

http://www.wikipedia.org
http://msdn.microsoft.com/
http://en.wikipedia.org/wiki/Berkeley_sockets
http://tangentsoft.net/wskfaq/
http://www.sockets.com/

Questions

