" A
Windows Shells with an

emphasis on PowerShell
(Vista)

Voutouri Panagiotis
Lada Nikolas



History of Windows Shells

m COMMAND.COM(1981) for MS-DOS,
Windows95/98/SE/Me

m cmd.exe(1993) for Windows 2000, XP, Server 2003

m Powershell(2006)

PowerShell is the new command line/scripting
environment from Microsoft.



= B
Command.com and cmd.exe
limitations

m Cannot automate all administrative functions found in
GUI applications

m Non POSIX.2 conformant
m Lack of adequate documentation

m Scripts where built as wrappers of GUI applications (and
not the other way around like UNIX-based systems)

m Windows Script Host was introduced to address some of
these shortcomings but suffered severe security
vulnerabilities and was not well intergraded into the shell



'
\

| "

~ +val MNA
clitial UU

ti

PowerShell is a composite of the complex tasks of a series of components.
The components are special programs called cmdlets (pronounced
command lets), which are .NET classes designed to use the features of the
environment.

The key difference between the usual UNIX approach and the PowerShell
one is that rather than creating a "pipeline" based on textual input and
output, PowerShell passes data between the various cmdlets as objects
(structured data).

If accessed individually from the command line, a cmdlet's output will
automatically be converted into text, but if its output is to be used by another
cmdlet, it will be converted into whatever form of object is most appropriate
for that cmdlet's input. This has the advantage of eliminating the need for
the many text-processing utilities which are common in UNIX pipelines,
such as grep and awk, as well as allowing things to be combined
interactively, or in a scripting environment, which would otherwise require a
more complex programming language



" J
Advantages/Disadvantages

Advantages:

Supports hash tables, switch statements , reg‘ular expressions,
arrays, looping (for/foreach/while), conditional statements
glf/SV%/ItCh) variable scoping (gIobaI/scrlpt/IocaI) pipeline,
unctions

Easy to discover its features (get-command, get —help, man)
Object Orientation (The output of a command is an object)
Using Familiar Command Names (cat, pwd, cls, rm, sort...)
Processing text, files, registry values, XML

Creates graphical User interface with Forms

Disadvantages:
Too slow compared with unix shells (tested with fork)
Nothing new compared with unix shells (almost)



Install

m Download installation file from

http://www.microsoft.com/windowsserver2003/technologies/management/powershell/downloa
d.mspx

m Supported Operating Systems:
Windows XP Service Pack 2 ,Vista
m Requires:
.NET Framework Version 2.0

m Enable execute for scripts
Set-ExecutionPolicy remotesigned

m Program HELLO, WORLD!
"hello, world!". ToUpper()




" A
Powershell Basics

@ Commands

command —parameterl —parameter2 argumentl argument2

m Powershell is POSIX compliant and backwards
compatible with cmd.exe

>|s /| sort
> dir c:\ | sort
> get-process
> pS
m Powershell parameter binding

> |s —Recurse ; Is —rec ;Is —r; Is —R ; “all do the same thing”



Powershell Basics

@ Commands in Powershell return .NET
objects

& Windows PowerShell

PSS GCixe (2 + 3.8 + "4 GetType(>.FullName
Suyztem.Double

PS5 G:n>

PS C:s>

PSS GC:ne (b6/32.GetType ). FullName
Sustem.Int32

PS5 G:iv>

PS C:v>

PS5 G:w>

PSS C:v> 6/4) _GetType (). FullMame
Sustem.Douhle

PS5 C:s>

PS5 GC:wr>

PS C:v>




" A0
Variables

m Declaration is not required
> $a = 123123

m Type is automatically assumed
>%a =12

> $a.GetType() ---int32

> $a = “aaa”

> $a.GetType() ---string

m Types can be freely mixed as long as there is no loss In
precision

>2+3.0+"4"



"
Operators

m Powershell supports all common operators found in
programming and extends their functionality (operators are
polymorphic)

Operator  Description Example Rosult

+ Add two saluss together, 2+4 &
“Hi * + “thers”  “Hi There"

1.22+456 1234586

Multiphy 2 values., 2%4 a
“a" * 3 “aaa”
1,2%2 1272
Subtract cne value from another. -2
Divide twe values. 6/2
7i4 1758
% Return the remainder from a divisicn operation.  7%4 3

10



Operators cont.

Operator Descrption Exampla Result
-eq)—ceq —i=q  Equals E—=q b Ftrue
-ne= —cne —ine Mot equals E—ne= 6 Ffals=
-at —cat —igt Greater than E—gt3 Ftrue
-ge —oge —ige Greater than or equal b Qe 2 Btrue
-t —clt —ilt Less than E—lt 3 $falz=
-le —cle -ile Less than or equals E—le= 2 Ffalz=
-contains The collection on the l=ft side contains 1,2, 2 —contains 2 Ftrue
~coontains the value =pecified on the night side.

-lcontains

-notcontains
-cnotcontains
-inotcontains

The collection on the left side does not 1,22 —notcontainz 2 $falze
contain the value on the right side.

Oparatar Descrption Exampla Rosult
Jdike —clike -ilike Do a wildcard pattern match. one” —like “o®"” e
ntliks —cncthn -moliks Do g wildeard patsm mateh; vus “one” —noliks "o $lalse

if the pattern doesn’t match.

11



Operators

for working with types

Operator Example Results Description
-is Ftrus —is [bool] Ftrue Trus if the type of the left side matches the typs
of the right side.
$trus -is [objec] Frrue This iz always true—saverything is an object
encept $Fnull.
$true -is [WalueTpe] Ftrue The left side is an instance of a .NET wvalue type.
"hi® -is [WalueTyoe] $falze A ostring is not a value tvipe; t's a reference type.
"hi® —is [object] Ftrue But a string is still an object.
12 —is [int] Frrue 12 is an integer.
12 —i= "int” Ftrue The nght side of the operator can be either a type
literal or a string naming a type.
-ignot Ftrus —isnot [stingl Ftrue The chject on the leit side is not of the same type

Ftrus —isnaot [object] Frrue

-as "123" -as [int] 122
123 —as "string” 12zt

as the nghi side.

The null values iz the onby thing that iznt an object.

Take s the left side and converts it to the type
specified on the right sides.

Turns the left side into an instancs of the type
named by the string on the right.

> foreach ($t in [float],[int],[string]) {"0123.45" -as $t}

12



Regular Expressions

Hello there.

My car is red. Your car is blue.
His car is orange and hers is gray.
Bob's car is blue too.

Goodbye.

old.txt

>{c:old.txt} -replace 'is (red|blue)’,'was $1' > new.txt

Hello there.

My car was red. Your car was blue.
His car is orange and hers is gray.
Bob's car was blue too.

Goodbye.

new.txt

13



" S
Arrays

» Creating and Working with Arrays
>%a=1,2,3,3,1,5

>$b =3,3,3,3

> $a = $a+$b

>%a=%a*3

« Arravs o

7 \ MJ\J A\ |

O

bjects

N

> $a = 1,2,"a string",
> $a.GetType()

> $a[1].GetType()

> $a[1].GetType()

D



Hashtables (as records)

& Windows PowerShell

Czw> Suser = B{ FirstMame = "John"'; LastHame = "Smith" ; PhoneMumber = "1233333'>
8 C:v> Suser

irstMame
PhoneMumhber 1233333

PS C:~» Suser.firstname

John

PS C:=~» Suser.city = "Lakatamia"'
PSS C:v>» Suser

Lakatamia

Smith

John
PhoneHumber 1233333

PSS C:x> Suser.Remove("city'>
PS C:s»> Suser

Mame Ualue
LasztHame

FirstMame

PhoneMumber 1233333




=
Flow control
If / Elseif / Else

m Syntax

if (condition) {statement} elseif (condition) {statement} else {statement}
m Example

if ($x —gt 100)

{

"It's greater than one hundred"

} elseif ($x —gt 50)

{

"It's greater than 50"

} else

{

"It's not very big."

}

16



" I
Loops

THE WHILE LOOP
B Syntax

While(condition=true)
{statements }

m Example

$val=0

while($val -ne 3){

$val++

"The number is $val"}
m  Qutput

The numberis 1

The number is 2

The number is 3

THE DO-WHILE LOOP
Syntax
Do { statements }
While (condition=true)

 Example

$val =0

do {

$val++

"The number is $val"}

while($val -ne 3)

 Output

The numberis 1

The number is 2

The number is 3

17



Loops (continue)

THE FOR LOOP THE FOR-EACH LOOP
. e Syntax
Syntax R foreach ( variable in
For (Initialize; loop_over ){
Condition=true; statements }
increment ){ y $Exa6nple
c=
statements } foreach ($f in dir *.txt)
 Example {$c += 1
for ($i1=0; $i -It 4 ; $i++) “The name of the $c txt
{ file is $f"}
"The number is $i” "We have total $c text
files in current dir*
} e Output
e Output The name of the 1 txt file is
The numberis 1 new.txt
The number is 2 The name of the 2 txt
. file is old.txt
The number is 3 We have total 2 text

- - - 18
files in current dir



m Foreach-Object
Similar to the foreach command

The automatic variable s Is used as the
loop variable.

Usually comes with pipeline

Example:
m dir *.txt | foreach-object {$ .length}
m Finds the length of all the text files in the current dir

19



" J
FLOW CONTROL USING
CMDLETS (continue)

m \Where-Object
select objects from a list

Comes with pipeline and the current pipeline
element is passing to the _$ elemen

Cvamnla:
L_AClLII Ilch.

m get-service | where { $_.Status -eq "Running" }
» Finds all the running services

20



Functions

m Function Hello World
Create the function
m function hello { "Hello world" }
Call the function
m Hello
The function returns:
= Hello world
m Returned values

Function returns the results of every statement executed in
an array. Then you can get that array by running it and
assign the results to a variable.

= PS (4) > $result = numbers -



Functions (continue)

m Function parameters

There is a default argument array called $args and
contains all of the arguments to the function

If you want to specify formal parameters you can use
the param statement

m param($name="world")
Personalized Hello Function
m function hello { "Hello $args" }

a Call the function
Hello George Tom

= The function returns:
Hello George Tom 22



" J
Scripts

m Create a script
Name a file with extension .psl

Write the code the same way as you did in
powershell
Write in the powershell ./filename to run it

m Scripts arguments
Just like functions (the default array $args)

m The param statement
specify formal parameters

23



Forms

25 My First Form

m  Powershell can load .NET libraries
(assemblies) such as forms.

m Example
[void][reflection.assembly]::LoadWithPartiaIName

("System.Windows.Forms®)

$form = New-Object Windows.Forms.Form
$form.Text = "My First Form"
$button = New-Object Windows.Forms.Button
$button.text="Push Me!"
$button.Dock="fill"
$button.add_click({$form.close()})
$form.controls.add($button)
$form.Add_Shown({$form.Activate()})

$form.ShowDialog()

Puzh kel

24



" A
Conclutions

m Powershell is easy to learn (syntax is similar to
UNIX shells)

m Powershell is a powerfull command line tool

m Powershell provides windows with much needed
scripting and administrative functionality

m Powershell still needs improvements (execution
time)

25



" B
Bibliography

m http://en.wikipedia.org/wiki/Windows Pow
erShell

m http://www.microsoft.com/windowsserver2
003/technologies/management/powershell
/default.mspx

m \WWindows powershell in action (ebook)

26



