
Windows Shells with an
h i P Sh llemphasis on PowerShell

(Vista)(Vista)

Voutouri Panagiotis
Lada Nikolas

1

History of Windows Shells

COMMAND COM(1981) for MS-DOSCOMMAND.COM(1981) for MS DOS,
Windows95/98/SE/Me

d (1993) f Wi d 2000 XP S 2003cmd.exe(1993) for Windows 2000, XP, Server 2003

Powershell(2006)Powershell(2006)
PowerShell is the new command line/scripting
environment from Microsoft.

2

Command com and cmd exeCommand.com and cmd.exe
limitations

Cannot automate all administrative functions found inCannot automate all administrative functions found in
GUI applications
Non POSIX.2 conformant
Lack of adequate documentation
Scripts where built as wrappers of GUI applications (and
not the other way around like UNIX-based systems)not the other way around like UNIX based systems)
Windows Script Host was introduced to address some of
these shortcomings but suffered severe security
vulnerabilities and was not well intergraded into the shellvulnerabilities and was not well intergraded into the shell

3

Central ConceptsCentral Concepts

PowerShell is a composite of the complex tasks of a series of components.
The components are special programs called cmdlets (pronounced
command lets) which are NET classes designed to use the features of thecommand lets), which are .NET classes designed to use the features of the
environment.
The key difference between the usual UNIX approach and the PowerShell
one is that rather than creating a "pipeline" based on textual input and

t t P Sh ll d t b t th i dl t bj toutput, PowerShell passes data between the various cmdlets as objects
(structured data).
If accessed individually from the command line, a cmdlet's output will
automatically be converted into text, but if its output is to be used by another y , p y
cmdlet, it will be converted into whatever form of object is most appropriate
for that cmdlet's input. This has the advantage of eliminating the need for
the many text-processing utilities which are common in UNIX pipelines,
such as grep and awk, as well as allowing things to be combinedsuch as grep and awk, as well as allowing things to be combined
interactively, or in a scripting environment, which would otherwise require a
more complex programming language

4

Advantages/Disadvantages
• Advantages:

• Supports hash tables, switch statements , regular expressions,
arrays looping (for/foreach/while) conditional statementsarrays, looping (for/foreach/while), conditional statements
(if/switch), variable scoping (global/script/local), pipeline,
functions.

• Easy to discover its features (get-command, get –help, man)y (g g p)
• Object Orientation (The output of a command is an object)
• Using Familiar Command Names (cat, pwd, cls, rm, sort…)
• Processing text, files, registry values, XML
• Creates graphical User interface with Forms

• Disadvantages:
T l d ith i h ll (t t d ith f k)• Too slow compared with unix shells (tested with fork)

• Nothing new compared with unix shells (almost)

5

Install

Download installation file from
http://www.microsoft.com/windowsserver2003/technologies/management/powershell/downloa
d.mspx

Supported Operating Systems:pp p g y
Windows XP Service Pack 2 ,Vista

Requires:q
.NET Framework Version 2.0

Enable execute for scripts
Set-ExecutionPolicy remotesigned

Program HELLO, WORLD!
"hello, world!".ToUpper()

6

Powershell Basics

Commands
command –parameter1 –parameter2 argument1 argument2

Powershell is POSIX compliant and backwardsPowershell is POSIX compliant and backwards
compatible with cmd.exe
> ls / | sort |
> dir c:\ | sort
> get-process
>> ps

Powershell parameter binding
> l R l l l R “ ll d th thi ”> ls –Recurse ; ls –rec ; ls –r ; ls –R ; “all do the same thing”

7

Powershell Basics

Commands in Powershell return .NET
objects

8

Variables
Declaration is not required

> $a = 123123

Type is automatically assumed
> $a = 12> $a 12
> $a.GetType() ---int32
> $a = “aaa”
> $a.GetType() ---string$ yp () g

Types can be freely mixed as long as there is no loss in
precisionprecision

> 2 + 3.0 + "4"

9

Operators
Powershell supports all common operators found in
programming and extends their functionality (operators are p g g y (p
polymorphic)

10

Operators cont.

11

Operators for working with types

> foreach ($t in [float],[int],[string]) {"0123.45" -as $t} foreach ($t in [float],[int],[string]) { 0123.45 as $t}

12

Regular Expressions

Hello there.
My car is red. Your car is blue. ld t tMy car is red. Your car is blue.
His car is orange and hers is gray.
Bob's car is blue too.
Goodbye.

old.txt

>{c:old.txt} -replace 'is (red|blue)','was $1' > new.txt

Hello there.
My car was red. Your car was blue.
His car is orange and hers is gray. new.txtg g y
Bob's car was blue too.
Goodbye.

new.txt

13

Arrays

Creating and Working with Arrays
$ 1 2 3 3 1 5> $a = 1,2,3,3,1,5

> $b = 3,3,3,3
> $a = $a+$b

$ $> $a = $a * 3

Arrays of ObjectsArrays of Objects
> $a = 1,2,"a string",4,5
> $a.GetType()
> $ [1] G tT ()> $a[1].GetType()
> $a[1].GetType()

14

Hashtables (as records)

15

Flow controlFlow control
If / Elseif / Else

Syntax
if (condition) {statement} elseif (condition) {statement} else {statement}

Example
if ($x –gt 100)
{
"It's greater than one hundred"
} elseif ($x –gt 50)
{
"It's greater than 50"
} else
{{
"It's not very big."
}

16

LoopsLoops
THE WHILE LOOP THE DO WHILE LOOPTHE WHILE LOOP

Syntax
While(condition=true)

THE DO-WHILE LOOP
• Syntax

Do { statements }While(condition=true)
{statements }

Example

{ }
While (condition=true)

• Example
$val = 0$val = 0

while($val -ne 3){
$val++

$val = 0
do {
$val++

$val++
"The number is $val"}
Output

"The number is $val"}
while($val -ne 3)

• Outputp
The number is 1
The number is 2

Output
The number is 1
The number is 2
Th b i 3The number is 3

17

The number is 3

Loops (continue)
THE FOR LOOP
• Syntax

For (Initialize;

THE FOR-EACH LOOP
• Syntax

foreach (variable inFor (Initialize;
Condition=true;
increment){
t t t }

loop_over){
statements }

• Example
$c=0statements }

• Example
for ($i=0; $i -lt 4 ; $i++)

$c 0
foreach ($f in dir *.txt)
{$c += 1
“The name of the $c txt
f l $f”}{

”The number is $i”
}

file is $f”}
"We have total $c text
files in current dir“

• Output}
• Output

The number is 1
The number is 2

Output
The name of the 1 txt file is
new.txt

The name of the 2 txt
fil i ld

18

The number is 2
The number is 3 file is old.txt

We have total 2 text
files in current dir

FLOW CONTROL USING CMDLETSFLOW CONTROL USING CMDLETS

Foreach-ObjectForeach Object
Similar to the foreach command
Th i i bl i d hThe automatic variable $_ is used as the
loop variable.
Usually comes with pipeline
Example:

dir *.txt | foreach-object {$_.length}
Finds the length of all the text files in the current dir

19

FLOW CONTROL USINGFLOW CONTROL USING
CMDLETS (continue)()

Where-Object
select objects from a list
Comes with pipeline and the current pipelineComes with pipeline and the current pipeline
element is passing to the _$ elemen
Example:Example:

get-service | where { $_.Status -eq "Running" }
Finds all the running servicesFinds all the running services

20

Functions
Function Hello World

Create the function
function hello { "Hello world" }

Call the function
H llHello

The function returns:
Hello worldHello world

Returned values
F ti t th lt f t t t t d iFunction returns the results of every statement executed in
an array. Then you can get that array by running it and
assign the results to a variable.g

PS (4) > $result = numbers
21

Functions (continue)
Function parameters

There is a default argument array called $args and
t i ll f th t t th f ticontains all of the arguments to the function

If you want to specify formal parameters you can use
the param statementthe param statement

param($name="world“)
P li d H ll F tiPersonalized Hello Function

function hello { "Hello $args" }
C ll th f tiCall the function

Hello George Tom

The function returns:The function returns:
Hello George Tom 22

Scripts

Create a scriptCreate a script
Name a file with extension .ps1
Write the code the same way as you did inWrite the code the same way as you did in
powershell
Write in the powershell ./filename to run itWrite in the powershell ./filename to run it

Scripts arguments
Just like functions (the default array $args)Just like functions (the default array $args)

The param statement
if f l tspecify formal parameters

23

Forms

Powershell can load .NET libraries
(assemblies) such as forms.
Example

[void][reflection.assembly]::LoadWithPartialName
("System.Windows.Forms“)
$form = New-Object Windows.Forms.Form

$form.Text = "My First Form"
$button = New Object Windows Forms Button$button = New-Object Windows.Forms.Button
$button.text="Push Me!"
$button.Dock="fill"
$button.add click({$form.close()})$ _ ({$ ()})
$form.controls.add($button)
$form.Add_Shown({$form.Activate()})
$form.ShowDialog()

24

Conclutions

Powershell is easy to learn (syntax is similar to
UNIX h ll)UNIX shells)
Powershell is a powerfull command line tool
Powershell provides windows with much needed
scripting and administrative functionality p g y
Powershell still needs improvements (execution
time)time)

25

Bibliography

http://en.wikipedia.org/wiki/Windows_Pow
erShell
http://www microsoft com/windowsserver2http://www.microsoft.com/windowsserver2
003/technologies/management/powershell
/default mspx/default.mspx
Windows powershell in action (ebook)

26

