
Introduction to awk

Part 1 of 3

Original Author : Brian Brown, CIT

Revision : 1.0

Date : 05/05/94

INTRODUCTION
awk is a programming language designed to search for, match patterns, and perform
actions on files. awk programs are generally quite small, and are interpreted. This
makes it a good language for prototyping.

THE STRUCTURE OF AN AWK PROGRAM

awk scans input lines one after the other, searching each line to see if it matches a set
of patterns or conditions specified in the awk program.

For each pattern, an action is specified. The action is performed when the pattern
matches that of the input line.

Thus, an awk program consists of a number of patterns and associated actions.
Actions are enclosed using curly braces, and separated using semi-colons.

 pattern { action }
 pattern { action }

INPUT LINES TO awk

When awk scans an input line, it breaks it down into a number of fields. Fields are
separated by a space or tab character. Fields are numbered beginning at one, and the
dollar symbol ($) is used to represent a field.

For instance, the following line in a file

 I like money.
has three fields. They are
 $1 I
 $2 like

 $3 money.
Field zero ($0) refers to the entire line.

awk scans lines from a file(s) or standard input.

Your first awk program

Consider the following simple awk program.
 { print $0 }

There is no pattern to match, only an action expressed. This means that for every line
encountered, perform the action.

The action prints field 0 (the entire line).

Using a text editor, create a file called myawk1 and place the above statement in
it. Save the file and return to the Unix shell prompt.

Running an awk program

To run the above program, type following command
 awk -f myawk1 /etc/group

awk interprets the actions specified in the program file myawk1, and applies this to
each line read from the file /etc/group. The effect is to print out each input line read
from the file, in effect, displaying the file on the screen (same as the Unix command
cat).

Searching for a string within an input line

To search for an occurrence of a string in an input line, specify it as a pattern and
enclose it using a forward slash symbol. In the example below, it searches each input
line for the string brian, and the action prints the entire line.
 /brian/ { print $0 }

Edit myawk1 and change the search string to your username. Run the program
on the files /etc/group and /etc/passwd
 awk -fmyawk1 /etc/group

 awk -fmyawk1 /etc/passwd

Compared to the previous example where there was no pattern specified, what is
the difference in the output of this program.
 ...
...............................

 ...
...............................

 ...
...............................
Type the following command. This runs the program who and sends its output of
who is logged on the system to the awk program which scans each line for the search
string. It will thus list out a line containing your login name, terminal number and
login date/time.
 who | awk -f myawk1

Change the contents of myawk1 to read (replace the search string with your login
name)
 /brian/ { print $1, $2 }

What do you expect the output of the program to be? (what fields will it print
out?)
 ...
...............................

 ...
...............................

 ...
...............................

Now type the command
 who | awk -f myawk1

What happened? How is the output different than before.
 ...
...............................

 ...
...............................

 ...
...............................

Using awk programs with form files

awk programs are particularly suited to generating reports or forms. In the following
examples, we shall use the following textual data as the input file. The file is available
from your tutor, can be typed in using a UNIX editor, or is available on the ftp host
brian.cit.ac.nz, in the OS202 subdirectory as the file awktext. A heading has been
provided here for clarity, there is no header in the data file.
 Type Memory (Kb) Location Serial # HD Size
(Mb)
 XT 640 D402 MG0010 0
 386 2048 D403 MG0011 100
 486 4096 D404 MG0012 270
 386 8192 A423 CC0177 400
 486 8192 A424 CC0182 670
 286 4096 A423 CC0183 100
 286 4096 A425 CC0184 80

 Mac 4096 B407 EE1027 80
 Apple 4096 B406 EE1028 40
 68020 2048 B406 EE1029 80
 68030 2048 B410 EE1030 100
 $unix 16636 A405 CC0185 660
 "trs80" 64 Z101 EL0020 0

In addition, all examples (awk program files myawknn) are available from your tutor
or by ftp from the ftp host brian.cit.ac.nz in the OS202 subdirectory (username=guest,
password=os2). A public domain MSDOS awk program (awk.exe) is also located in
this subdirectory.

Simple Pattern Selection

This involves specifying a pattern to match for each input line scanned. The following
awk program (myawk2) compares field one ($1) and if the field matches the string
"386", the specific action is performed (the entire line is printed).
 $1 == "386" { print $0 }
Note: The == symbol represents an equality test, thus in the above pattern, it
compares the string of field one against the constant string "386", and performs the
action if it matches.
 Create the program

 $ cat - > myawk2
 $1 == "386" { print $0 }
 < ctrl-d>
 $

 Note: < ctrl-d> is a keypress to terminate input to
the shell. Hold
 down the ctrl key and then press d. User input is
shown in bold type.

 Run The Program

 $ awk -f myawk2 awktext

 Sample Program Output

 386 2048 D403 MG0011 100
 386 8192 A423 CC0177 400

 The program prints out all input lines where the
computer type is a
 "386".

Write an awk program which prints out all input lines where a computer has 4096 Kb
of memory. After running the program successfully, enter it in the space provided
below.
 ...
.....................

Using Comments In awk Programs

Comments begin with the hash (#) symbol and continue till the end of the line. The
awk program below adds a comment to a previous awk program shown earlier
 #myawk3, same as myawk2 but has a comment in it
 $1 == "386" { print $0 }

Comments can be placed anywhere on the line. The example below shows the
comment placed after the action.
 $1 == "386" { print $0 } # print all records where the
computer is a 386

Remember that the comment ends at the end of the line. The following program is
thus wrong, as the closing brace of the action is treated as part of the comment.
 $1 == "386 { print $0 #print out all records }

Relational Expressions

We have already seen the equality test. Detailed below are the other relational
operators used in comparing expressions.
 < less than
 < = less than or equal to
 == equal to
 != not equal
 > = greater than or equal to
 > greater than
 ~ matches
 !~ does not match

Some Examples Of Using Relational Operators

 # myawk4, an awk program to display all input lines for
computers
 # with less than 1024 Kb of memory
 $2 < 1024 { print $0 }

 myawk4 Program Output
 XT 640 D402 MG0010 0
 "trs80" 64 Z101 EL0020 0

 ===
======
 # myawk5
 # an awk program to print the location/serial number of 486
computers
 $1 == "486" { print $3, $4 }

 myawk5 Program Output
 D404 MG0012
 A424 CC0182

 ===
======
 # myawk6

 # an awk program to print out all computers belonging to
management.
 /MG/ { print $0 }

 myawk6 Program Output
 XT 640 D402 MG0010 0
 386 2048 D403 MG0011 100
 486 4096 D404 MG0012 270

The awk program myawk6 scans each input line searching for the occurrence of the
string MG. When found, the action prints out the line. The problem with this is it
might be possible for the string MG to occur in another field, but the serial number
indicate that it belongs to another department.

What is necessary is a means of matching only a specific field. To apply a search to a
specific field, the match (~) symbol is used. The modified awk program shown below
searches field 4 for the string MG.

 # myawk6A
 # improved awk program, print out all computers belonging to
management.
 $4 ~ /MG/ { print $0 }

 myawk6a Program Output
 XT 640 D402 MG0010 0
 386 2048 D403 MG0011 100
 486 4096 D404 MG0012 270

What do the following examples do?
 $2 != "4096" { print $0 }

 ...
.......................

 ...
.......................

 $5 > 100 { print $4 }

 ...
.......................

 ...
.......................

 $4 !~ /CC/ { print $0 }

 ...
.......................

 ...
.......................

Write an awk program to display the location of all computers belonging to the
computer centre (code CC). Test the program, and after running the program
successfully, enter the program in the space provided below.
 ...
.....................

Making the output a bit more meaningful

In all the previous examples, the output of the awk program has been either the entire
line or fields within the line. Lets add some text to make the output more meaningful.
Consider the following awk program,
 # myawk7
 # list computers located in D block, type and location
 $3 ~ /D/ { print "Location = ", $3, " type = ", $1 }

 myawk7 Program Output
 Location = D402 type = XT
 Location = D403 type = 386
 Location = D404 type = 486

Text And Formatted Output Using printf

We shall tidy the output information by using a built in function of awk called printf.
C programmers will have no difficulty using this, as it operates the same way as in the
C programming language.

Printing A Text String

Lets examine how to print out some simple text. Consider the following statement,
 printf("Location : ");
The printf statement is terminated by a semi-colon. Brackets are used to enclose the
argument, and the text is enclosed using double quotes. Now lets combine it into an
actual awk program which displays the location of all 286 type computers.
 #myawk8
 $1 == "286" { printf("Location : "); print $3 }

 myawk8 Program Output
 Location : A423
 Location : A425

Printing A Field Which Is A Text String

Lets now examine how to use printf to display a field which is a text string. In the
previous program, a separate statement (print $3) was used to write the room location.
In the program below, this will be combined into the printf statement also.
 #myawk9
 $1 == "286" { printf("Location is %s\n", $3); }

 myawk9 Program Output
 Location is A423
 Location is A425
Note: The symbol \n causes subsequent output to begin on a new line. The symbol %s
informs printf to print out a text string, in this case it is the contents of the field $3.

Consider the following awk program which prints the location and serial number of
all 286 computers.

 #myawk10
 $1=="286" { printf("Location = %s, serial # = %s\n", $3, $4
); }

 myawk10 Program Output
 Location = A423, serial # = CC0183
 Location = A425, serial # = CC0184
Write an awk program which lists the serial numbers of all computers belonging to
the management school. After running the program successfully, enter it in the space
provided below.

 ...
..................

Printing A Numeric Value

Lets now see how to print a numeric value. The symbol %d is used for numeric
values. The following awk program lists the location and disk capacity of all 486
computers.
 #myawk11
 $1=="486" { printf("Location = %s, disk = %dKb\n", $3, $5);
}

 myawk11 Program Output
 Location = D404, disk = 270Kb
 Location = A424, disk = 670Kb
Write an awk program which lists the memory size and serial number of all
computers which have a hard disk greater than 80Mb in size. After running the
program successfully, enter it in the space provided below.
 ...
..................

Formatting Output

Lets see how to format the output information into specific field widths. A modifier to
the %s symbol specifies the size of the field width, which by default is right justified.

 #myawk12
 # formatting the output using a field width
 $1=="286" {printf("Location = %10s, disk = %5dKb\n",$3,$5);}

 myawk12 Program Output
 Location = A423, disk = 100Kb
 Location = A425, disk = 80Kb
10%s specifies to print out field $3 using a field width of 10 characters, and %5d
specifies to print out field $5 using a field width of 5 digits.

Summary of printf so far

Below lists the options to printf covered above. [n] indicates optional arguments.
 %[n]s print a text string
 %[n]d print a numeric value
 \n print a new-line

The BEGIN And END Statements Of An awk Program

The keywords BEGIN and END are used to perform specific actions relative to the
programs execution.
 BEGIN The action associated with this keyword is executed
before the
 first input line is read.

 END The action associated with this keyword is executed
after all
 input lines have been processed.
The BEGIN keyword is normally associated with printing titles and setting default
values, whilst the END keyword is normally associated with printing totals.

Consider the following awk program, which uses BEGIN to print a title.

 #myawk13
 BEGIN { print "Location of 286 Computers" }
 $1 == "286" { print $3 }

 myawk13 Program Output
 Location of 286 Computers
 A423
 A425

Introducing awk Defined Variables

awk programs support a number of pre-defined variables.
 NR the current input line number
 NF number of fields in the input line

 #myawk14

 # print the number of computers
 END { print "There are ", NR, "computers" }

 myawk14 Program Output
 There are 13 computers

User Defined Variables In An awk Program

awk programs support the use of variables. Consider an example where we want to
count the number of 486 computers we have. Variables are explicitly initialised to
zero by awk, so there is no need to assign a value of zero to them.

The following awk program counts the number of 486 computers, and uses the END
keyword to print out the total after all input lines have been processed. When each
input line is read, field one is checked to see if it matches 486. If it does, the awk
variable computers is incremented (the symbol ++ means increment by one).

 #myawk15
 $1 == "486" { computers++ }
 END { printf("The number of 486 computers is %d\n",
computers); }

 myawk15 Program Output
 The number of 486 computers is 2

 Note: There is no need to explicitly initialise the variable
'computers' to
 zero. awk does this by default.

Write an awk program which counts the number of computers which have 8192Kb or
greater amounts of memory, then prints the number found at the end of the program.
After running the program successfully, enter it in the space provided below.

 ...
..................

 ...
..................

Write an awk program which sums the disk space of all computers, then prints the
total disk space at the end of the program. After running the program successfully,
enter it in the space provided below.

 ...
..................

 ...
..................

Introduction to awk

Part 2 of 3

Original Author : Brian Brown, CIT

Revision : 1.0

Date : 05/05/94

ref awk.doc

Regular Expressions

awk provides pattern searching which is more comprehensive than the simple
examples outlined previously. These patterns are called regular expressions, and are
similar to those supported by other UNIX utilities like grep.

The simplest regular expression is a string enclosed in slashes,

 /386/
In the above example, any input line containing the string 386 will be printed. To
restrict a search to a specific field, the match (or not match) symbol is used. In the
following example, field one of the input line is searched for the string 386.
 $1 ~ /386/
In regular expressions, the following symbols are metacharacters with special
meanings.
 \ ^ $. [] * + ? () |

 ^ matches the first character of a string
 $ matches the last character of a string
 . matches a single character of a string
 [] defines a set of characters
 () used for grouping
 | specifies alternatives

A group of characters enclosed in brackets matches to any one of the enclosed
characters. In the example below (myawk16), field one is matched against either "8"
or "6".
 #myawk16, display all x8x computer types
 $1 ~ /[86]/ { print $0 }

 myawk16 Program Output
 386 2048 D403 MG0011 100
 486 4096 D404 MG0012 270
 386 8192 A423 CC0177 400
 486 8192 A424 CC0182 670
 286 4096 A423 CC0183 100
 286 4096 A425 CC0184 80

 68020 2048 B406 EE1029 80
 68030 2048 B410 EE1030 100
 "trs80" 64 Z101 EL0020 0
Note: In this example, field one is searched for the character '8' and '6', in any order of
occurrence and position.

If the first character after the opening bracket ([) is a caret (^) symbol, this
complements the set so that it matches any character NOT IN the set. The following
example (myawk17) shows this, matching field one with any character except "2" "3"
"4" "8" or "6".

 #myawk17
 # display all which do not contain 2, 3, 4, 6 or 8 in first
field
 $1 ~ /[^23468]/ { print $0 }

 myawk17 Program Output
 XT 640 D402 MG0010 0
 Mac 4096 B407 EE1027 80
 Apple 4096 B406 EE1028 40
 68020 2048 B406 EE1029 80
 68030 2048 B410 EE1030 100
 $unix 16636 A405 CC0185 660
 "trs80" 64 Z101 EL0020 0

 Why are the lines containing "68020", "68030" and "trs80"
also displayed?

 ...
...............................

 ...
...............................

 ...
...............................

 #myawk18
 # display all lines where field one contains A-Z, a-z
 $1 ~ /[a-zA-Z]/ { print $0 }

 myawk18 Program Output
 XT 640 D402 MG0010 0
 Mac 4096 B407 EE1027 80
 Apple 4096 B406 EE1028 40
 $unix 16636 A405 CC0185 660
 "trs80" 64 Z101 EL0020 0
Parentheses are used to group options together, and the vertical bar is used for
alternatives. In the following example (myawk19), it searches all input lines for the
string "Apple", "Mac", "68020" or "68030".
 #myawk19
 # illustrate multiple searching using alternatives
 /(Apple|Mac|68020|68030)/ { print $0 }

 myawk19 Program Output
 Mac 4096 B407 EE1027 80
 Apple 4096 B406 EE1028 40

 68020 2048 B406 EE1029 80
 68030 2048 B410 EE1030 100

To use metacharacters as part of a search string, their special meaning must be
disabled. This is done by preceding them with the backslash (\) symbol. The
following example prints all input lines which contain the string "b$".

 /b\$/ { print $0 }

Write an awk program which prints out all input lines for computers which belong to
the school of management (using metacharacters). After running the program
successfully, enter it in the space provided below.

 ...
..................

Write an awk program which prints out all input lines for computer types which
begin with a dollar ($) symbol (using metacharacters). After running the program
successfully, enter it in the space provided below.

 ...
..................

Special symbols recognised by awk

In addition to metacharacters, awk recognises the following C programming language
escape sequences within regular expressions and strings.
 \b backspace
 \f formfeed
 \r carriage return
 \t tab
 \" double quote

The following example prints all input lines which contain a tab character
 /\t/ { print $0 }

Consider also the use of string concatenation in pattern matching. The plus (+)
symbol concatenates one or more strings in pattern matching. The following awk
program (myawk16a) searches for computer types which begin with a dollar ($)
symbol and are followed by an alphabetic character (a-z, A-Z), and the last character
in the string is the symbol x.
 #myawk16a
 $1 ~ /^\$+[a-zA-Z]+x$/ { print $0 }

 myawk16 Program Output
 $unix 16636 A405 CC0185 660

Write an awk program which prints out all input lines for computer types which are
enclosed in double quotes (using metacharacters). After running the program
successfully, enter it in the space provided below.

 ...
..................

awk interprets any string or variable on the right side of a ~ or !~ as a regular
expression. This means the regular expression can be assigned to a variable, and the
variable used later in pattern matching. An earlier awk program (myawk17) searched
for input lines where field one did not contain the digits 2, 3, 4, 6 or 8.
 #myawk17
 # display all which do not contain 2, 3, 4, 6 or 8 in first
field
 $1 ~ /[^23468]/ { print $0 }

The awk program below shows how to rewrite this (myawk17) using a variable which
is assigned the regular expression.

 #myawk20
 BEGIN { matchstr = "[^23468]" }
 $1 ~ matchstr { print $0 }

 myawk20 Program Output
 XT 640 D402 MG0010 0
 Mac 4096 B407 EE1027 80
 Apple 4096 B406 EE1028 40
 68020 2048 B406 EE1029 80
 68030 2048 B410 EE1030 100
 $unix 16636 A405 CC0185 660
 "trs80" 64 Z101 EL0020 0
Consider the following example, which searches for all lines which contain the double
quote character (").
 #myawk21
 BEGIN { matchstr = "\"" }
 $1 ~ matchstr { print $0 }

 myawk21 Program Output
 "trs80" 64 Z101 EL0020 0

Combining Patterns

Patterns can be combined to provide more powerful and complex matching. The
following symbols are used to combine patterns.
 || logical or, either pattern can match
 && logical and, both patterns must match
 ! logical not, patterns not matching
Lets suppose we want a list of all "486" computers which have more than 250Mb of
hard disk space. The following awk pattern uses the logical and to construct the
necessary pattern string.
 #myawk22
 $1 == "486" && $5 > 250 { print $0 }

 myawk22 Program Output
 486 4096 D404 MG0012 270
 486 8192 A424 CC0182 670
Write and awk program which lists all computers of type "286" which have 2Mb or
more memory. After running the program successfully, enter it in the space provided
below.

 ...
..................

Write and awk program which lists all computers of type "286", "386" and "486"
which have a hard disk fitted. After running the program successfully, enter it in the
space provided below.

 ...
..................

awk Pattern Ranges

A pattern range is two patterns separated by a comma. The action is performed for
each input line between the occurrence of the first and second pattern.
 #myawk23
 # demonstrate the use of pattern ranges
 /XT/, /Mac/ { print $0 }

 myawk23 Program Output
 XT 640 D402 MG0010 0
 386 2048 D403 MG0011 100
 486 4096 D404 MG0012 270
 386 8192 A423 CC0177 400
 486 8192 A424 CC0182 670
 286 4096 A423 CC0183 100
 286 4096 A425 CC0184 80
 Mac 4096 B407 EE1027 80
The awk program myawk23 prints out all input lines between the first occurrence of
"XT" and the next occurrence of "Mac".

Write an awk program using a pattern range to print out all input lines beginning with
the first computer fitted with 8192Kb of memory, up to the next computer which has
less than 80Mb of hard disk. After running the program successfully, enter it in the
space provided below.

 ...
..................

awks Built In Variables

awk provides a number of internal variables which it uses to process files. These
variables are accessible by the programmer. The following is a summary of awk's
built-in variables.
 ARGC number of command-line arguments
 ARGV array of command-line arguments
 FILENAME name of current input file
 FNR record number in current file
 FS input field separator (default= space and tab
characters)

 NF number of fields in input line
 NR number of input lines read so far
 OFMT output format for numbers (default=%.6)
 OFS output field separator (default=space)
 ORS output line separator (default=newline)
 RS input line separator (default=newline)
 RSTART index of first character matched by match()
 RLENGTH length of string matched by match()
 SUBSEP subscript separator (default="\034")

 #myawk24
 # print the first five input lines of a file, bit like head
 FNR == 1, FNR == 5 { print $0 }

 myawk24 Program Output
 XT 640 D402 MG0010 0
 386 2048 D403 MG0011 100
 486 4096 D404 MG0012 270
 386 8192 A423 CC0177 400
 486 8192 A424 CC0182 670

 ===
======
 #myawk25
 # print each input line preceded with a line number
 # print the heading which includes the name of the file
 BEGIN { print "File:", FILENAME }
 { print NR, ":\t", $0 }

 myawk25 Program Output
 File: awktext
 1 : XT 640 D402 MG0010 0
 2 : 386 2048 D403 MG0011 100
 3 : 486 4096 D404 MG0012 270
 4 : 386 8192 A423 CC0177 400
 5 : 486 8192 A424 CC0182 670
 6 : 286 4096 A423 CC0183 100
 7 : 286 4096 A425 CC0184 80
 8 : Mac 4096 B407 EE1027 80
 9 : Apple 4096 B406 EE1028 40
 10 : 68020 2048 B406 EE1029 80
 11 : 68030 2048 B410 EE1030 100
 12 : $unix 16636 A405 CC0185 660
 13 : "trs80" 64 Z101 EL0020 0

 ===
======
 #myawk26
 # demonstrate use of argc and argv parameters
 BEGIN { print "There are ",ARGC, "parameters on the command
line";
 print "The first argument is ", ARGV[0];
 print "The second argument is ", ARGV[1]
 }

 myawk26 Program Output
 (invoked using awk -fmyawk26 awktext)

 There are 2 parameters on the command line
 The first argument is awk

 The second argument is awktext

 ===
======
 #myawk27
 # print out the number of fields in each input line
 { print "Input line", NR, "has", NF, "fields" }

 myawk27 Program Output
 Input line 1 has 5 fields
 Input line 2 has 5 fields
 Input line 3 has 5 fields
 Input line 4 has 5 fields
 Input line 5 has 5 fields
 Input line 6 has 5 fields
 Input line 7 has 5 fields
 Input line 8 has 5 fields
 Input line 9 has 5 fields
 Input line 10 has 5 fields
 Input line 11 has 5 fields
 Input line 12 has 5 fields
 Input line 13 has 5 fields

Using the BEGIN statement, it is often desirable to change both FS (the symbol used
to separate fields) and RS (the symbol used to separate input lines). The following
text file (awktext2) is used for the program myawk28. The test file separates each field
using a dollar symbol ($), and each input line by a carat symbol (^). The program
reads the file and prints out the username and password for each users record. A
heading is shown only for clarity.
 awktext2 data format
 (username$address$password$privledge$downloadlimit$protocol^)
 Joe Bloggs$767 Main Rd Tawa$smidgy$clerk$500$zmodem^Sam
Blue$1023
 Kent Drive Porirua$yougessedit$normal100xmodem^Bobby
Williams$96
 Banana Grove$mymum$sysop3000zmodem^

 #myawk28
 # a program which shows use of FS and RS, scans awktext2
 BEGIN { FS = "\$"; RS = "\^" }
 { print "User = ", $1, " Password:", $3 }

 myawk28 Program Output
 User = Joe Bloggs Password: smidgy
 User = Sam Blue Password: yougessedit
 User = Bobby Williams Password: mymum
 User = Password:

Write an awk program which works with the text file awktext2. The program is to
print out all names of users who have a privilege level of "sysop" or "clerk". After
running the program successfully, enter it in the space provided below.

 ...
..................

 ...
..................

 ...
..................

awks Assignment Operators

The following is a summary of awk's assignment operators.
 + add
 - subtract
 * multiply
 / divide
 ++ increment
 -- decrement
 % modulus
 ^ exponential
 += plus equals
 -= minus equals
 *= multiply equals
 /= divide equals
 %= modulus equals
 ^= exponential equals

Now some examples,
 sum = sum + 3 # same as sum += 3
 sum = x / y
 n++ # same as n = n + 1

The following awk program displays the average installed memory capacity for an
IBM type computer (XT - 486). Note the use of %f within the printf statement to
print out the result in floating point format. The use of .2 between the % and f
symbols specify two decimal places.
 #myawk29
 /(XT|286|386|486)/ { computers++, ram += $2 }
 END { avgmem = ram / computers;
 printf(" The average memory per PC = %.2f",
avgmem)
 }

 myawk29 Program Output
 The average memory per PC = 4480.00

Write an awk program to print out all the total cost (to the nearest cent) of disk space
for computers belonging to the school of management. Assume that disk space has
been costed at $10.20 per megabtye. After running the program successfully, enter it
in the space provided below.

 ...
..................

 ...
..................

 ...
..................

Write an awk program to print out the percentage (to one decimal place) of
computers which have 2048Kb or less of memory. After running the program
successfully, enter it in the space provided below.

 ...
..................

 ...
..................

 ...
..................

awks Built In Arithmetic Operators and Functions

The following is a summary of awk's built-in arithmetic operators and functions. All
operations are done in floating point format.
 atan2(y,x) arctangent of y/x in radians
 cos(x) cosine of x, with x in radians
 exp(x) exponential function of x
 int(x) integer part of x truncated towards 0
 log(x) natural logarithm of x
 rand() random number between 0 and 1
 sin(x) sine of x, with x in radians
 sqrt(x) square root of x
 srand(x) x is new seed for rand()

Consider the following awk program (myawk30) which prints the square root of an
inputted value. This program also shows interactive use, by entering the file that awk
processes directly from the keyboard. If no data file is specified (as in the example
below, awk reads from the keyboard).
 #myawk30, to print the square root of a number
 { print sqrt($1) }

 Running myawk30
 awk -fmyawk30

 myawk30 Sample Program Output (user entry shown in bold)
 2
 1.41421
 3
 1.73205
 4
 2
Note: The user pressed CTRL-D (F6 for MSDOS) to signify the end of data input.

Write an awk program to calculate and print out (to three decimal places) the natural
logarithm of a value entered from the keyboard. After running the program
successfully, enter it (and the command used to invoke it) in the space provided.

command:
 ...
..................

program:
 ...
..................

awks Built In String Functions

The following is a summary of awk's built-in string functions. An awk string is
created by enclosing characters within quotes ("). A string can contain C language
escape sequences. The following awk string contains the escape sequence for a new-
line character.
 "hello\n"

 gsub(r,s) substitutes s for r globally in current input
line, returns the
 number of substitutions
 gsub(r,s,t) substitutes s for r in t globally, returns
number of substitutions
 index(s,t) returns position of string t in s, 0 if not
present
 length(s) returns length of s
 match(s,r) returns position in s where r occurs, 0 if not
present
 split(s,a) splits s into array a on FS, returns number of
fields
 split(s,a,r) splits s into array a on r, returns number of
fields
 sprintf(fmt, expr-list) returns expr-list formatted
according to format string
 specified by fmt
 sub(r,s) substitutes s for first r in current input
line, returns number of
 substitutions
 sub(r,s,t) substitutes s for first r in t, returns number
of substitutions
 substr(s,p) returns suffix s starting at position p
 substr(s,p,n) returns substring of s length n starting at
position p

The following awk program (myawk31) uses the string function gsub to replace each
occurrence of 286 with the string AT.

 #myawk31
 { gsub(/286/, "AT"); print $0 }

 myawk31 Program Output
 XT 640 D402 MG0010 0

 386 2048 D403 MG0011 100
 486 4096 D404 MG0012 270
 386 8192 A423 CC0177 400
 486 8192 A424 CC0182 670
 AT 4096 A423 CC0183 100
 AT 4096 A425 CC0184 80
 Mac 4096 B407 EE1027 80
 Apple 4096 B406 EE1028 40
 68020 2048 B406 EE1029 80
 68030 2048 B410 EE1030 100
 $unix 16636 A405 CC0185 660
 "trs80" 64 Z101 EL0020 0

Write an awk program to find and print out the longest computer name (hint: use the
length function as a pattern). After running the program successfully, enter it in the
space provided below.

 ...
..................

 ...
..................

 ...
..................

Introduction to awk

Part 3 of 3

Original Author : Brian Brown, CIT

Revision : 1.0

Date : 05/05/94

ref awk.doc

awk Control Flow Statements

awk provides a number of constructs to implement selection and iteration. These are
similar to C language constructs.
 if (expression) statement1 else statement2
The expression can include the relational operators, the regular expression matching
operators, the logical operators and parentheses for grouping.

expression is evaluated first, and if NON-ZERO then statement1 is executed,
otherwise statement2 is executed.

In the following awk program (myawk32), each input line is scanned and field $5 is
compared against the value of the awk user defined variable disksize (awk initialises it
to 0). When field $5 is greater, it is assigned to disksize, and the input line is saved in
the other user defined variable computer. Note the use of the braces { } to group the
program statements as belonging to the if statement (same syntax as in the C
language).

 #myawk32
 #demonstrate use of if statement, find biggest disk
 { if(disksize < $5)
 {
 disksize = $5
 computer = $0
 }
 }
 END { print computer }

 myawk32 Program Output
 486 8192 A424 CC0182 670

Write an awk program to print out only those computers which are type "486" with
4096Kb or more memory. Use an if statement to perform this. After running the
program successfully, enter it in the space provided below.
 ...
..................

 ...
..................

 ...
..................

 ...
..................

 ...
..................

 while (expression) statement
expression is evaluated, and if NON-ZERO then statement is executed, then
expression is re-evaluated. This continues until expression evaluates as ZERO, at
which time the while statement terminates.
 #myawk33
 # a while statement to print out each second field only for
"286" computers
 BEGIN { printf("Type\tLoc\tDisk\n") }
 /286/ { field = 1
 while(field < = NF)
 {
 printf("%s\t", $field)
 field += 2
 }
 print ""

 }

 myawk33 Program Output
 Type Loc Disk
 286 A423 100
 286 A425 80

The following data file (awktext3) contains a list of computers per department in an
organisation.
Management 22 Electronics 46 Engineering
 12
Health_Science 5 Tourism 20 Registry
 18
Computing_Centre 300 Library 4 Halls
 2
Write an awk program to print out the total number of computers held by the
organisation using the data file awktext3. Use a while statement to perform this (Hint:
look at myawk33). After running the program successfully, enter it in the space
provided below.
 ...
..................

 ...
..................

 ...
..................

 ...
..................

 for (expression1; expression; expression2) statement
The for statement provides repetition of a statement. expression1 is executed first, and
is normally used to initialise variables used within the for loop. expression is a re-
evaluation which determines whether the loop should continue. expression2 is
performed at the end of each iteration of the loop, before the re-evaluation test is
performed.
 1. expression1
 2. expression is evaluated. If non-zero got step 3 else exit
 3. statement is executed
 4. expression2 is executed
 5. goto step 2
Consider the following awk program (myawk34) which is the same as myawk33
shown earlier.
 #myawk34
 # a for statement to print out each second field only for
"286" computers
 BEGIN { printf("Type\tLoc\tDisk\n") }
 /286/ { for(field = 1; field < = NF; field += 2)
printf("%s\t", $field)
 print ""
 }

 myawk34 Program Output
 Type Loc Disk

 286 A423 100
 286 A425 80

Write an awk program to print out the total number of computers held by the
organisation using the data file awktext3. Use a for statement to perform this (Hint:
look at your solution using the while statement previously). After running the
program successfully, enter it in the space provided below.
 ...
..................

 ...
..................

 ...
..................

 ...
..................

 ...
..................

 do statement while(expression)
The statement is executed repeatedly until the value of expression is ZERO. statement
is executed at least once.
 #myawk35
 # print out every second field for "286" computers
 BEGIN { field = 1 }
 $1 == "286" { do {
 printf("%s\t", $field)
 field += 2
 } while(field < = NF)
 }

 myawk35 Program Output
 286 A423 100

 break, continue, next, exit
The break statement causes an immediate exit from within a while or for loop.

The continue statement causes the next iteration of a loop.

The next statement skips to the next input line then re-starts from the first pattern-
action statement.

The exit statement causes the program to branch to the END statement (if one exists),
else it exits the program.

 #myawk36
 #print out computer types "286" using a next statement
 { while($1 != "286") next; print $0 }

 myawk36 Program Output
 286 4096 A423 CC0183 100
 286 4096 A425 CC0184 80

Arrays in awk programs

awk provides single dimensioned arrays. Arrays need not be declared, they are created
in the same manner as awk user defined variables.

Elements can be specified as numeric or string values. Consider the following awk
program (myawk37) which uses arrays to hold the number of "486" computers and the
disk space totals for all computers.

 #myawk37
 # diskspace[] holds sum of disk space for all computers
 # computers[] holds number of computers of specified type
 $1 == "486" { computers["486"]++ }
 $5 > 0 { diskspace[0] += $5 }
 END { print "Number of 486 computers =", computers[486];
 print "Total disk space = ",diskspace[0]
 }

 myawk37 Program Output
 Number of 486 computers = 2
 Total disk space = 2580

Note that the previous program (myawk37) uses TWO pattern action statements for
each input line. The first pattern action statement handles the number of "486" type
computers, whilst the second handles the total disk space for all computer types.

Write an awk program to print out the total disk space for computer types "286",
"386" and "486". Use arrays to hold the disk space totals. After running the program
successfully, enter it in the space provided below.

 ...
..................

 ...
..................

 ...
..................

 ...
..................

 ...
..................

 ...
..................

Consider the following awk program (myawk38) which uses the in statement
associated with processing areas. The program
 #myawk38
 { computers[$1]++ }
 END { for (name in computers)

 print "The number of ",name,"computers
is",computers[name]
 }

 myawk38 Program Output
 The number of "trs80" computers is 1
 The number of $unix computers is 1
 The number of 286 computers is 2
 The number of 386 computers is 2
 The number of 486 computers is 2
 The number of 68020 computers is 1
 The number of 68030 computers is 1
 The number of Apple computers is 1
 The number of Mac computers is 1
 The number of XT computers is 1

awk User Defined Functions

awk supports user defined functions. The syntax is
 function name(argument-list) {
 statements
 }
The definition of a function can occur anywhere a pattern-action statement can.
argument-list is a list of variable names separated by commas. There must be NO
space between the function name and the left bracket of the argument-list.

The return statement is used to return a value by the function.

Consider the following awk program (myawk39) which calculates the factorial of an
inputted number.

 #myawk39
 function factorial(n) {
 if(n < = 1) return 1
 else return n * factorial(n - 1)
 }
 { print "the factorial of ", $1, "is ", factorial($1) }

 Sample myawk39 Program Output (awk -fmyawk39)
 10
 the factorial of 10 is 3628800
 3
 the factorial of 3 is 6
 1
 the factorial of 1 is 1
 4
 the factorial of 4 is 24

awk Output

The statements print and printf are used in awk programs to generate output. awk
uses two variables, OFS (output field separator) and ORS (output record separator) to
delineate fields and output lines. These can be changed at any time.

The special characters used in printf, which follow the % symbol, are,

 c single character
 d decimal integer
 e double number, scientific notation
 f floating point number
 g use e or f, whichever is shortest
 o octal
 s string
 x hexadecimal
 % the % symbol
The default output format is %.6g and is changed by assigning a new value to
OFMT.

awk Output To Files

awks output generated by print and printf can be redirected to a file by using the
redirection symbols > (create/write) and > > (append). The names of files MUST be
in quotes.
 #myawk40
 # demonstrates sending output to a file
 $1 == "486" { print "Type=",$1, "Location=",$3 >
"comp486.dat"

 Sample output contained in 'comp486.dat'
 Type= 486 Location= D404
 Type= 486 Location= A424

Write an awk program to print out the total disk space for computer types "286",
"386" and "486". Use arrays to hold the disk space totals. The output will be stored in
the file 'dspace.dat'. After running the program successfully, enter it in the space
provided below.
 ...
..................

 ...
..................

 ...
..................

 ...
..................

 ...
..................

 ...
..................

awk Output To Pipes

The output of awk programs can be piped into a UNIX command. The statement
 print " ",$1 | "sort"
causes the output of the print command to be piped to the UNIX sort command.

Write an awk program to print out a sorted list of all "286", "386" and "486"
computers sorted according to disk size. After running the program successfully, enter
it in the space provided below.

 ...
..................

 ...
..................

 ...
..................

awk Input

Data Files

We have seen TWO methods to give file input to an awk program. The first specified
the filename on the command line, the other left it blank, and awk read from the
keyboard (examples were myawk30 and myawk39).

Program Files

We have used the -f parameter to specify the file containing the awk program. awk
programs can also be specified on the command-line enclosed in single quotes, as the
following example shows.
 awk '/286/ {print $0 }' awktext
Note: For MSDOS systems, a double quote must be used to enclose the awk program
when specified on the command line.

The getline function

awk provides the function getline to read input from the current input file or from a
file or pipe.

getline reads the next input line, splitting it into fields according to the settings of NF,
NR and FNR. It returns 1 for success, 0 for end-of-file, and -1 on error.

The statement

 getline data

reads the next input line into the user defined variable data. No splitting of fields is
done and NF is not set.

The statement

 getline < "temp.dat"
reads the next input line from the file "temp.dat", field splitting is performed, and NF
is set.

The statement

 getline data < "temp.dat"
reads the next input line from the file "temp.dat" into the user defined variable data,
no field splitting is done, and NF, NR and FNR are not altered.

Consider the following example, which pipes the output of the UNIX command who
into getline. Each time through the while loop, another line is read from who, and the
user defined variable users is incremented. The program counts the number of users
on the host system.

 while ("who" | getline)
 users++

Write an awk program to list all details of type "286" computers. Prefix the list with
the current date (Hint: see the previous example, and the UNIX command date). After
running the program successfully, enter it in the space provided below.
 ...
..................

 ...
..................

awk Summary
The following is a summary of the most common awk statements and features.
Command Line

 awk program filenames
 awk -f program-file filenames
 awk -Fs
 (sets field separator to string s, -Ft sets separator to tab)

Patterns

 BEGIN
 END
 /regular expression/
 relational expression
 pattern & & pattern
 pattern || pattern
 (pattern)
 !pattern
 pattern, pattern

Control Flow Statements

 if (expr) statement [else statement]
 if (subscript in array) statement [else statement]
 while (expr) statement
 for (expr ; expr ; expr) statement
 for (var in array) statement
 do statement while (expr)
 break
 continue
 next
 exit [expr]
 return [expr]

Input Output

 close(filename) close file
 getline set $0 form next input line,
set NF, NR, FNR
 getline < file set $0 from next input line of
file, set NF
 getline var set var from next input line,
net NR, FNR
 getline var < file set var from next input line of
file
 print print current input line
 print expr-list print expressions
 print expr-list > file print expressions to
file
 printf fmt, expr-list format and print
 printf fmt, expr-list > file format and print to file
 system(cmd-line) execute command cmd-line,
return status

In print and printf above, > > appends to a file, and the | command
writes to
a pipe. Similarly, command | getline pipes into getline. The function
getline returns
0 on the end of a file, -1 on an error.

Functions

 func name(parameter list) { statement }
 function name (parameter list) { statement }
 function-name (expr, expr, ...)

String Functions

 gsub(r,s,t) substitutes s for r in t globally, returns
number of substitutions
 index(s,t) returns position of string t in s, 0 if not
present
 length(s) returns length of s
 match(s,r) returns position in s where r occurs, 0 if not
present

 split(s,a,r) splits s into array a on r, returns number of
fields
 sprintf(fmt, expr-list) returns expr-list formatted
according to format string specified by fmt
 sub(r,s,t) substitutes s for first r in t, returns number
of substitutions
 substr(s,p,n) returns substring of s length n starting at
position p

Arithmetic Functions

 atan2(y,x) arctangent of y/x in radians
 cos(x) cosine of x, with x in radians
 exp(x) exponential function of x
 int(x) integer part of x truncated towards 0
 log(x) natural logarithm of x
 rand() random number between 0 and 1
 sin(x) sine of x, with x in radians
 sqrt(x) square root of x
 srand(x) x is new seed for rand()

Operators (increasing precedence)
 = += -= *= /= %= ^= assignment
 ?: conditional expression
 || logical or
 & & logical and
 ~ !~ regular expression
match, negated match
 < < = > > = != == relationals
 blank string concatenation
 + - add, subtract
 * / % multiply, divide,
modulus
 + - ! unary plus, unary
minus, logical negation
 ^ exponentional
 ++ -- increment, decrement
 $ field

Regular Expressions (increasing precedence)

 c matches no-metacharacter c
 \c matches literal character c
 . matches any character except newline
 ^ matches beginning of line or string
 $ matches end of line or string
 [abc...] character class matches any of abc...
 [^abc...] negated class matches any but abc...
and newline
 r1 | r2 matches either r1 or r2
 r1r2 concatenation: matches r1, then r2
 r+ matches one or more r's
 r* matches zero or more r's
 r? matches zeor or more r's
 (r) grouping: matches r

Built-In Variables

 ARGC number of command-line arguments
 ARGV array of command-line arguments (0..ARGC-1fR)
 FILENAME name of current input file
 FNR input line number number in current file
 FS input field separator (default blank)
 NF number of fields in input line
 NR number of input lines read so far
 OFMT output format for numbers (default=%.6g)
 OFS output field separator (default=space)
 ORS output line separator (default=newline)
 RS input line separator (default=newline)
 RSTART index of first character matched by match()
 RLENGTH length of string matched by match()
 SUBSEP subscript separator (default=\034")

Limits
Each implementation of awk imposes some limits. Below are typical
limits

 100 fields
 2500 characters per input line
 2500 characters per output line
 1024 characters per individual field
 1024 characters per printf string
 400 characters maximum quoted string
 400 characters in character class
 15 open files
 1 pipe

Converting files between MSDOS and UNIX format

MSDOS uses a CR and LF to separate each line of a file. The carriage return
character appears as a ^M symbol in the editor vi. In addition, some MSDOS editors
mark the end of a file using the CTRL-Z character.

UNIX uses a LF to separate each line of a file. There is no end of file character.

SCO UNIX provides a mechanism for converting between MSDOS and UNIX file
formats.

 dtox
 converts a MSDOS file to UNIX format (does not strip the end-
of-file
 character).

 dtox awktext > awktext.unx

 It may also be necessary to load the file into an editor and
remove the end-
 of-file character.

 xtod
 converts a UNIX file to MSDOS format.

 xtod awktext.unx > awktext

