ElNA421 - lNpoypOUUATIONOG ZUCTNHATWY

AlaAecn 5

Al0XEIPION ZUCTNUATWYV
UNIX Il — 2T10ifeg Ne@pEANG

Anunteng ZeivaAittoup

5-1

Lecture Outline

* |Introduction to Cloud Computing

— Typical Datacenters, Cloud Stack and Buzzwords, Public
/ Private Clouds, Utility Computing, Killer Apps,
Economic Model
 Distributed System Basics
— 1/O Performance
— Replication Strategies

— The Hadoop Project (Core, HDFS, Map-Reduce, HBase,
HIVE)

— The Hadoop Distributed File System (HDFS)
— HDFS vs. NFS (Network File System)
— HDFS Example Deployments (Yahoo, Facebook)

5-2

Voo
<l

Cloud Computing f

* Different definitions for “Cloud Computing” exist
— http://tech.slashdot.org/article.pl?sid=08/07/17/2117221

* Common ground of many definitions / ayadad

— processing power, storage and software are commodities that are
readily available from large infrastructure

— service-based view: “everything as a service (*aaS)”, where only
“Software as a Service (SaaS)” has a precise and agreed-upon definition

— utility computing: pay-as-you-go model

~ i A VR - - g L —————
7 . — -

-

Google's Datacenter in Oregon Microsoft'/Azure in'Chicago

Cloud Computing o
(Datacenters)

Example: data centers

®
- ".

o / nﬁs._ Datacenter
Ny o
® @ucy

Typical setting of a Google data center.

@ =~ 40 servers per rack;
©@ =~ 150 racks per data center (cluster);

@ =~ 6,000 servers per data center;
© how many clusters? Google’s secret, and constantly evolving . ..

Rough estimate: 150-200 data centers? 1,000,000 servers?

Cloud Computing
(Cloud Stack)

__ O
Software User Interface Machine Interface { 4
(SaaS) i
nd User
(
Platform . { 3 J
Components Services ——t
(PaaS) Application
Developer
Q
(IS Computation Network Storage _
(laaS) System
Administrator

Source: Wikipedia (http: .wikipedia.
SaaS Examples: Google Apps, Quickbooks Online and Salesforce.com. u kipedia (http://www.wikipedia.org)

PaaS Examples: Amazon Elastic Beanstalk, Heroku, EngineYard, Google App Engine, and Microsoft Azure.

laaS Examples: Amazon CloudFormation (and underlying services such as Amazon EC2), Rackspace Cloud, Google Compute
Engine, and RightScale.

5-5

Cloud Computing
(Public vs. Private)

* Term cloud computing usually refers to both
— SaaS: applications delivered over the Internet as services
— The Cloud: data center hardware and systems software

* Public clouds

— available in a pay-as-you-go manner to the public

— service being sold is utility computing

— Amazon Web Service, Microsoft Azure, Google AppEngine
* Private clouds

— internal data centers of businesses or organizations

— normally not included under cloud computing

Based on: “Above the Clouds: A Berkeley View of Cloud Computing”, RAD
Lab, UC Berkeley

5-6

Cloud Computing
Utility Computing — YTT. Q@eAciac)

NewSQL-as-a-Service
To Amazon RDS* (Relational Database Service)

Pay by the hour your DB Instance runs.

US — N. Yirginia US — N. California EU - Ireland APAC - Singapore
DB Instance Class Price Per Hour
Small DB Instance 963$ / year $0.11
Large DB Instance $0.44
Extra Large DB Instance $0.88
Double Extra Large DB Instance $1.55
e £t | e e 27,165 % /year

DB Instance Classes

(*essentially MySQL running on Amazon EC2 —
Amazon RDS currently supports five DB Instance Classes: EIaStIC Computlng CIOUd

Small DB Instance: 1.7 GB memory, 1 ECU {1 virtual core with 1 ECU), 64-bit platform, Moder /o Capamty

Large DB Instance: 7.5 GB memory, 4 ECUs (2 virtual cores with 2 ECUs each), &64-bit platform, High I/O
Capacity

Extra Large DB Instance: 15 GB of memory, 8 ECUs (4 virtual cores with 2 ECUs each), &4-bit platform, High
1/O Capacity

Double Extra Large DB Instance: 34 GB of memory, 13 ECUs (4 virtual cores with 3,25 ECUs each), 64-bit
platform, High /O Capacity

Quadruple Extra Large DB Instance: 68 GB of memory, 26 ECUs (8 virtual cores with 3.25 ECUs each), 64-bit
platform, High 1/0 Capacity

For each DB Instance class, RDS provides you with the ability to select from SGB to 1TB of associated storage capacity.
One ECU provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

Cloud Computing
(Utility Computing — YT1. Q@eAgiag)

* |[lusion of infinite computing resources
— available on demand

— no need for users to plan ahead for provisioning

* No up-front cost or commitment by users
— companies can start small

— increase resources only when there is an increase in need

* Pay for use on short-term basis as needed
— processors by the hour and storage by the day
— release them as needed, reward conservation

5-8

Cloud Computing

(Virtualization - TexvoAoyia €IKOVIKWY CUCTNUATWY)

* Virtual resources abstract from physical resources

hardware platform, software, memory, storage, network

— fine-granular, lightweight, flexible and dynamic

* Relevance to cloud computing

centralize and ease administrative tasks
improve scalability and work loads
increase stability and fault-tolerance

provide standardized, homogenous computing platform through
hardware virtualization, i.e. virtual machines

5-9

Voo
<l

Our laaS Private Cloud

vmware vCenter Management

«“ zenix

/ nM5|.

L] 8 2] | Summary | Monitor Resource Management L @
v [/ VCENTER Ucv
v [DMSL1
) v Status | | ¥ YMHardware
v [:| esyS.in.cs.ucy.ac.cy
» @ ADMIN Overall & Normal » CPU 2 CPU({g), 0 MHz used
» @BSC » Memory | | 20488, 0 MB used
Images ¥ Guest OS Details O
> @Imag » Hard disk 1 16.00 GB
» & RESEARCH Power State Powered Off
5 » Network adapter1 DMSLGuestNet disconnected
> @ KP-Cluster Guest 08 CentOs 415/ (64-hi))
G veenter (@) CD/DVD drive 1 Disconnected
Fhvdresses | [
] tive isconnecte
~ [}3 DMSL2 DNS Name i
v [:] esxl.in.cs.ucy.ac.cy e @ ot running (Current) » Other Additional Hardware
& CloudStorage S HW Version g
PLE46-11
& EPLB4E Edit Settings...
G EPLE46-12 |
PLG4B-1 —
GhEPLG46-13 ~ Related ltems
5 EPLE46-14
) EPL646-15 T SR esxstore
La cnconsoie
G EPLE46-16 Networks DMSLGuestNet
5 EPLE46-17 Host ea¥B.iN.CS UCY 30, CV
- : esx5.in.cs.ucy.ac.cy
&) EPLE46-18 Annotations O
& EPLG46-19 Notes Resource Pool esxh.in.cs.ucy.ac.cy
v Q esx2.in.cs.ucy.ac.cy
5 EPLE46-1
5 EPLE46-10
Fh EPLE4E-2 e l I l O
G EPLE4E-4

5-10

Cloud Computing
(Economic Model)

Resource Cost in Medium Cost in Very Large Ratio
Data Center Data Center

Network $95/Mbps/month $13/Mbps/month 7.1x

Storage $2.20/GB/month $0.40/GB/month 5.7x

Administration =140 servers/admin >1000 servers/admin 7.1x

Source: James Hamilton (http://perspectives.mvdirona.com)
* Cloud computing is 5-7x cheaper than traditional in-house
computing
* Added benefits

— utilize off-peak capacity (Amazon)
— sell .NET tools (Microsoft)
— reuse existing infrastructure (Google)

5-11

Cloud Computing
(Killer Apps: OLTP/OLAP)

* Data management applications are potential candidates for

deployment in the cloud

— industry: enterprise database system have significant up-front cost that
includes both hardware and software costs

— academia: manage, process and share mass-produced data in the cloud

* Many “Cloud Killer Apps” are in fact data-intensive

— Batch Processing as with map/reduce

— Online Transaction Processing (OLTP) as in automated business
applications

— Offline Analytical Processing (OLAP) as in data mining or machine
learning

5-12

Cloud Computing
(Killer Apps: eScience)

* Old model
— “Query the world”
— data acquisition coupled to a specific hypothesis

* New model
— “Download the world”

— data acquired en masse, in support of many hypotheses
* E-science examples
— astronomy: high-resolution, high-frequency sky surveys, ...
— oceanography: high-resolution models, cheap sensors, satellites, ...

— biology: lab automation, high-throughput sequencing, ...

5-13

Distributed Systems Basics
(I/0O Performance)

- - s : (Serial Attach. SCSI) 3.5" HDD
\.‘ B aaaasee .Ii:.g_w_ ;*‘::';f‘;:;:;.“f,, ,: M In RA ID-5 Conﬁguration
Y il . [10Gbps FCoE also available]

Virtual Machines

Datacenter

Distributed Systems Basics
(I/0O Performance)

Performance
Type Latency Bandwidth (throughput)
Disk ~ 5 x 10~ 3s (5 millisec.); At best 100 MB/s
LAN ~1—2x 10 3s (1-2 millisec.); ~ 1GB/s (single rack);
~ 100MB /s (switched);
Internet | Highly variable. Typ. 10-100 ms.; Highly variable. Typ. a few MB/s.;

Bottom line (1): it is approx. one order of magnitude faster to exchange main memory
data between 2 machines in a data center, that to read on the disk.
Bottom line (2): exchanging through the Internet is slow and unreliable with respect to
LANSs.

5-15

Distributed Systems Basics
(I/0O Performance)

Distribution, why?

Sequential access. |t takes 166
minutes (more than 2 hours and

memory ‘ memory
a half) to read a 1 TB disk. 100 B g NS
Parallel access. With 100 disks, . f —
. _ . 178 disk |1 TB disk|
assuming that the disks work in L
a. Single CPU. single dis| b. Parallel read: single CPU, many disks
parallel and sequentially: about I petwork
memory [ar N memory e \ - o ,| memorY|
1 mn 308- ml . s e Lo 4 100 MB/s

Distributed access. With 100 100 MBs 100 M’
computers, each disposing of its ,
own local disk: each CPU pro- e Distributed reads: an extendible setofservers
cesses its own dataset.(Similar tol Parallel but more scalable)

Scalability
The latter solution is scalable, by adding new computing resources.
5-16

Distributed Systems Basics
(I/0O Performance)

What you should remember: performance of data-centric
distr. systems

@ disk transfer rate is a bottleneck for large scale data management;
parallelization and distribution of the data on many machines is a means
to eliminate this bottleneck;

@ write once, read many: a distributed storage system is appropriate for
large files that are written once and then repeatedly scanned;

© data locality: bandwidth is a scarce resource, and program should be
“pushed” near the data they must access to.

5-17

Terminology
(MR => HADOOP => HBASE)

 Map-Reduce: a programming model for processing
large data sets. Google

Invented by Google! "MapReduce: Simplified Data Processing
on Large Clusters, Jeffrey Dean and Sanjay Ghemawat,
OSDI'04: Sixth Symposium on Operating System Design and
Implementation,San Francisco, CA, December, 2004."

Can be implemented in any language (recall javascript Map-
Reduce we used in the context of CouchDB).

 Hadoop: Apache's open-source software framework
that supports data-intensive distributed applications

Derived from Google's MapReduce + Google File System
(GFS) papers.

Enables applications to work with thousands of computation-

independent computers and petabytes of data. L@hadﬂﬂp
5-18

Download: http://hadoop.apache.org/

http://hadoop.apache.org/

 Hadoop Project Modules: m hadﬂap

Terminology
(MR => HADOOP => HBASE)

Hadoop Common: The common utilities that support the other Hadoop modules.

Hadoop Distributed File System (HDFS™): A distributed file system that provides high-
throughput access to application data.

Hadoop YARN (Yet Another Resource Negotiator): A framework for job scheduling and
cluster resource management.

Hadoop MapReduce (MapReduce v2.0): A YARN-based system for parallel processing of
large data sets. (Next Lectures)

« Other Hadoop-related projects at Apache include:

Ambari: Dashboard management system for Hadoop.

Avro™ A data serialization system.

Cassandra™ A scalable multi-master database with no single points of failure.
Chukwa ™ A data collection system for managing large distributed systems.

HBase ™ (Hadoop Database): A scalable, distributed database that supports
structured data storage for large tables. (Next Lectures)

Hive ™ A data warehouse infrastructure that provides data summarization and ad hoc
querying.
Mahout™ A Scalable machine learning and data mining library.

Pig™: A high-level data-flow language and execution framework for parallel
computation. (Next Lectures)

ZooKeeper™: A high-performance coordination service for distributed applications. 5-19

Hadoop v3

* In our laboratory we will use a Single Node

Setup (consult the image that has been
circulated by the TA).

—Hadoop v2 requires Java 7 or greater—
our labs & assignments ©.

—Hadoop v3 (Jan. 17, alpha) requires

Java 8 — will not be seen further ®

* New Features: HDFS Erasure encoding, YARN v2 Timeline
service (HBase store) Opportunistic containers, 2
Namenodes, default ports changed, Filesystem Connectors

(e.g., Microsoft Azure Data Lake), Intra-DataNode Balancer
5.20

Large-Scale File Systems
(GFS => HDFS)

History and development of GFS

Problem: if nodes can fail, how can we store data persistently?
Answer: Distributed File System (global file namespace)

Google File System, a paper published in 2003 by Google Labs at OSDI.

The Google File System, Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, 19th ACM
Symposium on Operating Systems Principles, Lake George, NY, October, 2003.

Explains the design and architecture of a distributed system apt at serving very

large data files; internally used by Google for storing documents collected from
the Web.

Open Source versions have been developed at once: Hadoop File System
(HDFS), and Kosmos File System (KFS).

5-21

Network File Systems

(NFS=>GFS=

>HDFS)

UNIX NFS (Network File System):
nfsd (deamon) mounts remote folders to a UNIX host (/etc/fstab).

l)dzeina@evterpi> df

Filesystem 1K—-blocks Used
/dev/mapper/VGSystem—LVroot

2031440 950588
/dev/mapper/VGSystem—LVtmp

1015704 34104

/dev/mapper/VGSystem—LVvar
3301112 2002692
/dev/mapper/VGSystem—LVopt
507748 112975
/dev/mapper/VGSystem—LVusr
4570784 2777372
/dev/mapper/VGSystem—LVusrlLocal

507748 65526
/dev/sdal 101086 40747
tmpfTs 2023380 ____®
/dev/mapper/VGData-tVdétS _______
- 58120148 43379612
,csf§4 CS.ucy.ac.cy:/vol/home/research
e 576716800 508312448
(csfsl.cs.ucy.ac.cy:/home/Taculty
\\ 629145600 524337472
Sgsfs5.cs.ucy.ac.cy:/home/projects
S~ 51606528 20917760

Available Use%s Mounted on
975996 50% /
929172 4% /tmp
1128044 64% /var
368559 24% /opt
1557492 65% /usr

416008 14% /usr/local
55120 43% /boot
2023380 0% /dev/shm

11744012 79% /sys—data- _
~y
~
~

68404352 89% /home/research \\

104808128 84% /home/faculty !

s
-

28067328 43% /home/prg}eCts
5-22

Network File Systems

(NFS=>GFS=>HLC

NFS uses a
Client/Server
Architecture that
IS a single point of
failure by default.

User Program

PDF
uffer

User B
read
Kernel
Open File Table POF Buffer
/i 4 '1 Cache
(Inode Etructure)

Inode
Structurd
(on disk

.

Disk Blocks
4KB-8KB

Simplified NFS Protocol Sequence

FS)

SERVER

.

|
CLIFNT Port M@pper Moqntd
\ I
\ I |
APPquATION l Iopon TCP/UDP 1‘!"l I
USER Isystem call ‘ Register '
KERNEL Buffer | . |'|i o
Cache 29

=1

Vlnual File Sys;em
(VFS) Layerl

get_pdrt reque
—

PC get_gort reply |
|

NFS Port Number

44;44]\4

HPC MOUNT request
T

|
|
|
|
|
|
} | CLIENT AUTHENTICA

[ION

l

RFJ‘C GETATTR Requelst

1

RPC MOUNT reply |
1 1

|

|

RPC GETATTR Reply
I 1

RRC LOOKUP Requeist

| [
RPC LOOKUP Reply

RPC
Server Stub

Local File Systen] NFS
Interface \ Client
|
|
|
Ext3, FAT, NTFS, + RPE
| ‘ Client Stub
|
I \
|
I
|
PHYSICAL
DISK

| RPC READ Reply
T

|
|
|
|
RPC READ Reques}
|
T
|
|
|
|

~

USER
KERNEL

System Call

Virtual File System
(VFS) Layer

i

Local File System
Interface

Ext3, FAT, NTFS, ...

- _é7_

Network

lilustrated by Sezgin Bayrak

5-23

TR e —
block o
<24KB direct blocks -
<1 MB single indirect == E_ @ :— data
<512MB double indirect = [data] - g I R e |
< max supported file™™" g
. data
size

INode Aopec oto UNIX
(ETTavaAnyn)

T yiveral eav éva apxeio €xel TToAAd blocks;

YTTAPXEl APKETOG XWPOG YIa va attobnkeutouv 6Aa Ta i-nodes Twv
blocks 1ToU cuoxeTiCovTal JE TO APXEIO;

To YtmroouoTnua ApXeiwv XpNOIYOTTOIET Eva IEPAPXIKO OXAMA TO
oTroio atroteAgital atrd dévdopa delkTwy Babouc O (direct, autd 10
oTroio €idape AdN), 1 (single), 2 (double), kai 3 (triple)

mode

owners (2)

timestamps (3)

Large-Scale File Systems
(Hadoop File System - HDFS)

The problem
Why do we need a distributed file system in the first place?

Fact: standard NFS (left part) does not meet scalability requirements (what if

file1 gets really big?).
Chuck (Block) Size: 4KB-32KB
NFS File Size Limit = 2GB gever |

Y \\ Default Chunk Size: 64 MB

N drA diB - Unlimited File Size
dirA dirB /' \ (21PB by Facebook)
/ VAN file2 dirC

file2 \

remote ™, Server 2 o filel
- distribution 1
link virtual layer
= N hysical layer
il A P ¢
/ Lhunk 1 hunk's chunk 2 3x repllcas per
filel chunk 2 chunk 1 chunk 3
chunk
A traditional network file system A large scale distributed file system

Right part: GFS/HDFS storage, based on (i) a virtual file namespace, and (ii)

partitioning of files in “chunks”.
5-25

YaHoOO!
2010 _

Large-Scale File Systems
(Hadoop File System - HDFS)

Target Deployed
Capacity 10PB 14PB
Nodes 10,000 4000
Clients 100,000 15,000
Files 100,000,000 | 60,000,000

facebook.

2010

» 21 PB of storage in a single HDFS cluster

« 2000 machines

» 12 TB per machine (a few machines have 24 TB each)

« 1200 machines with 8 cores each + 800 machines with 16 cores each
» 32 GB of RAM per machine

» 15 map-reduce tasks per machine

TABLE 1: TARGETS FOR HDFS VS. ACTUALLY DEPLOYED VALUES

AS OF 2009

HDFS scalability: the limits to growth
http://static.usenix.org/publications/login/2010-04/openpdfs/shvachko.pdf

5-26

Large-Scale File Systems
(Hadoop File System - HDFS)

Architecture

A Master node performs administrative tasks, while servers store “chunks” and

send them to Client nodes.

—> GFS structure Master node

/dirB/filel \

o3 NIESSAZES

4 chunk a

i | chunkb |-,
\ Qile namespace i Chunk locati(ny,

.., : (
(4)
S . U4

> SCI‘\'CI‘ 6)) Gcr\,ch
read(/dirB/filel) Server

The Client maintains a cache with chunks locations, and directly
communicates with servers.

Namespace
lookup are fast
(1 Master enough!)
[1GB Metadata =
1PB Data]

In NFS Metadata
+ Transfers going
through same
server => Not
Scalable

HDFS designed for
unreliable
hardware (2-3
failures / 1000
nodes / day)

New Hardware: 3x more unreliable!!!

S9-27

Large-Scale File Systems
(Hadoop File System - HDFS)

Technical details ; \

@ The architecture works best for very large files (e.g., several Gigabytes),
divided in large (64-128 MBs) chunks.
= this limits the metadata information served by the Master.

@ Each server implements recovery and replication techniques (default: 3
replicas).

@ (Availability) The Master sends heartbeat messages to servers, and
initiates a replacement when a failure occurs.

@ (Scalability) The Master is a potential single point of failure; its protection
relies on distributed recovery techniques for all changes that affect the file

namespace.
-28

HDFS in Hadoop 3.0 (future)

* |n Hadoop 3.0, Erasure Encoding in HDFS will
be introduced to allow nodes store less but
provide similar levels of fault tolerance.

— Block-Interleaved Distributed Parity in RAID-5

Before;

edureka!

After:

P | | |

7~ ~N — -
7/ 50%overheadas1 \ mLOCK Al lLOCK A2 Bl e e b
[.
\ Parity Block stored z IBLOCK B1 BLOCK Bp ELOCK B2

N for 2 Data Block ~
~—
~—_ -~ Wty sockct |Blockca Data Block
DISK 1 DISK 2 DISK 3 B ity

More: https://www.edureka.co/blog/hadoop-3/

5-29

https://www.edureka.co/blog/hadoop-3/

User Interface

API
— Java API
— C language wrapper (libhdfs) for the Java APl is also avaiable

POSIX like command
— hadoop dfs -mkdir /foodir
— hadoop dfs -cat /foodir/myfile.txt
— hadoop dfs -rm /foodir myfile.txt

HDFS Admin
— bin/hadoop dfsadmin —safemode
— bin/hadoop dfsadmin —report
— bin/hadoop dfsadmin -refreshNodes

Web Interface
— Ex: http://localhost:50070

5-30

Web Interface .
(http://172.16.203.136:50070) &

NameNode '172.16.203.136:8020'

Started: Sun May 17 11:52:41 CST 2009
Version: 0.20.0, r763504

Compiled: Thu Apr 9 05:18:40 UTC 2009 by ndaley
Upgrades: There are no upgrades in progress.

Browse the filesystem
Namenode Logs

Cluster Summary

55 files and directories, 52 blocks = 107 total. Heap Size is 4.94 MB /198.5 MB (2%)

Configured Capacity : 13.32 GB

DFS Used . 88147 KB

Non DFS Used : 6.88 GB Live Datanodes : 2

DFS Remaining : 6.44 GB Configured Non

DFSUsed% i 001% Node | ooy | me | Gty | et | OFS, | Perame | Vet | Ve
DFS Remaining% : 48.35 % (GB)

Live Nodes : 2 172.16.203.132 2 | InSenvice 6.66 0 3.06 36 | 0.01
Dead Nodes . 0 172.16.203.133 2 | InService 6.66 0 3.82 2.84 001 |C—

NameNode Storage:

Storage Directory | Type State

Afmp/namenode IMAGE_AND_EDITS | Active

Web Interface

(http://localhost:50070) [
Browse the file system

Contents of directory /test

Goto : jtest go_

Go to parent directory ,
IName | Type |Size||Replication [Block Size |Modification Time [Permission |Owner Group |
linput |dir || || | 2009-05-16 15:15 |rwxr-xr-x |root ||supergroup
|M Hdn' “ “ “ “2009-05-1615:17 Hrwxr-xr-x |root “supergroup‘
joutput |dir | | H
joutpuzdir || | |
joutputs|dir | | I
joutput6jdir | | I

Cluster Status and Metrics

HDFS Disk Usage DataNodes Live HOFS Links
P
s ~ NameNode
= oz Secondary Namedode

. 15% 11

@ HBase B 1 DataNode:
@ Hive More v
® WebHCat
® raconB

CPU Usage Cluster Load NameNode Heap
® siom@g k

u 100% N
® Ooze
32%
® Gangla
Jios E—_

NameNode Uptime HBase Master Heap HBase Links

No Active Master

5-32

http://172.16.203.136:50070

POSIX Like command

Usagé: hadoop fs [generic options]

[root@172 bin]# ./hadoop dfs -mkdir /test/inputl0
[root€@172 bin]# ./hadoop dfs -put ../conf/* /test/inputl0
[root@172 bin)# ./hadoop dfs -l1ls /test/inputl0/
Found 13 items

A o S
A o T
A o S
3 o T
S a7 5 S,
S a7 5 N S
S a7 5 R
S a7 5 R S
S a7 5 N
S a7 15 N S
S a7 15 R
S a7 15 R
S a7 5 N S

Wwwwwuwwwwwwww

3
[root€@172 bin]# ./hadoop dfs -tail /test/inputl0/masters
localhost
[root@172 bin]#

root
root
root
root
root
root
root
root
root
root
root
root
root

supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup

6275
535
270
2296
1245
4190
259
2815
272
10
30
1243

1195

2009-05-17
2009-05-17
2009-05-17
2009-05-17
2009-05-17
2009-05-17
2009-05-17
2009-05-17
2009-05-17
2009-05-17
2009-05-17
2009-05-17
2009-05-17

12:21
12:21
12:21
12:21
12:21
12:21
12:21
12:21
12:21
12:21
12:21
12:21
12:21

[-appendToFile <localsrc> ... <dst>]

[-cat [-ignoreCrc] <src> ...]

[-checksum <src> ...]

[-chgrp [-R] GROUP PATH...]

[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
[-chown [-R] [OWNER][:[GROUP]] PATH...]
[-copyFromLocal [-f] [-p] [-1] <localsrc> ...
[-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ...
[-count [-q] [-h] <path> ...]

[-cp [-f] [-p | -pltopax]] <src> ... <dst>]
[-createSnapshot <snapshotDir> [<snapshotName>]]
[-deleteSnapshot <snapshotDir> <snapshotName>]
[-df [-h] [<path> ...]1]

[-du [-s] [-h] <path> ...]

[-expunge]

[-find <path> ... <expression> ...]
[-get [-p] [-ignoreCrc] [-crc] <src> ...
[-getfacl [-R] <path>]

[-getfattr [-R] {-n name | -d} [-e en] <path>]
[-getmerge [-nl] <src> <localdst>]

[-help [cmd ...]]

[-1s [-d] [-h] [-R] [<path> ...]]

[-mkdir [-p] <path> ...]
[-moveFromLocal <localsrc> ...
[-moveToLocal <src> <localdst>]
[-mv <src> ... <dst>]

[-put [-f] [-p] [-1] <localsrc> ...

<dst>]
<localdst>]

<localdst>]

<dst>]

<dst>]

/test/inputl0/capacity-scheduler.xml
/test/inputl10/configuration.xsl
/test/inputl0/core-site.xml
/test/input10/hadoop-env.sh
/test/input10/hadoop-metrics.properties
/test/input10/hadoop-policy.xml
/test/input10/hdfs-site.xml
/test/input10/log4;j.properties
/test/input10/mapred-site.xml
/test/input10/masters
/test/inputl10/slaves
/test/inputl0/ssl-client.xml.example
/test/inputl10/ssl-server.xml.example

5-33

Java APl

 Latest API

— http://hadoop.apache.org/core/docs/current/api/

URI uri = new URI("hdfs://namenode/") ;

FileSystem fs = FileSystem.get (uri, new Configuration());
Path file = new Path("answer");
DataOutputStream out = fs.create(file);

out.writeInt (42) ;

out.close () ;

DataInputStream in = fs.open(file);
System.out.println(in.readInt()) ;

in.close();

fs.delete (file);

5-34

