
University of Cyprus

Department of

Computer Science

EPL448: Data Mining

on the Web – Lab 7

Παύλος Αντωνίου

Γραφείο: B109, ΘΕΕ01

Feature selection & Feature extraction

• Used to eliminate the number of features (columns) leading to:

– Less computation time when training predictive modelling algorithms

– Noise reduction by discarding irrelevant or redundant features

– Easier to understand (interpretable) feature set, easier to visualize dataset

• Useful in datasets with large number of features that may not all
contribute meaningfully to the prediction task.

• Feature selection: Select a subset of the original feature set

• Feature extraction: Build a new set of
features from the original feature set

– Dimensionality Reduction techniques: used for
mapping observations in high-dimensional (high
number of features) space to lower number of
dimensions (features) while preserving structure,
e.g pairwise distances, between observations

Feature selection

• Select a subset of the original feature set

– Feature selection using statistical techniques: select features based on their

statistical properties or statistical relationship with target variable (e.g.,

correlation, variance, chi-squared test)

• fast but not accurate methods

– Feature selection using feature importance: ensemble predictive modelling

techniques (e.g., decision trees, random forest, gradient boosting) evaluate

features importance during their training process

• moderate speed and better accuracy

– Feature selection using the predictive performance of model: iteratively select

a subset of “important” features based on which the model is trained to

achieve the highest predictive performance (e.g., forward/backward selection)

• slow (computationally expensive) but accurate methods

Feature selection using correlation

• pandas corr() method to compute pairwise correlation between all

dataset columns

– available correlation methods: pearson, kendall, spearman

Wine dataset: 178 wine observations by 13 features. Wines classified into 3

types.

df = pd.read_csv('wine.csv')

fig, ax = plt.subplots(figsize = (12 , 10))

sns.heatmap(df.corr(method='pearson'), annot = True)

http://rasbt.github.io/mlxtend/user_guide/data/wine_data/
https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB07/wine.csv

Feature selection using correlation

Observations:

• Features Phenoids,

Flavanoids, Hue, OD,

Proline are highly

negatively correlated to the

target value (Wine) ; see

the first line of the heat map

• Features Phenols &

Flavanoids are highly

(positively) correlated to

each other. One of them

could be removed if the

dataset had a large number

of features. This is not the

case so we can keep them.

Target variable

Feature selection using variance

• Quick and lightweight way of eliminating features with very low

variance, i. e. features with not much useful information

– Variance shows how spread out the feature distribution is (the average

squared distance from the mean)

– If a feature has 0 variance it is completely useless. Using a feature with zero

variance only adds to model complexity, not to its predictive power.

– Features that go around a single constant are also useless. In other words,

any feature with close to 0 variance should be dropped.

import numpy as np

np.std([2, 2, 2, 2, 2, 2, 2, 2]) # 0.0

np.std([5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6]) # 0.28747978728803447

Feature selection using variance

• Scikit-learn provides VarianceThreshold estimator that accepts a threshold

cut-off and removes all features with variance below that threshold

– Often, it is not fair to compare the variance of a feature to another. The reason

is that as the values in the distribution get bigger, the variance grows

exponentially. In other words, the variances will not be on the same scale.

X = df.drop(columns=['Wine']) # features dataframe

y = df['Wine'] # target dataframe

X.describe()

Feature selection using variance

• Scikit-learn provides VarianceThreshold estimator that accepts a threshold

cut-off and removes all features with variance below that threshold

– Often, it is not fair to compare the variance of a feature to another. The reason

is that as the values in the distribution get bigger, the variance grows

exponentially. In other words, the variances will not be on the same scale.

The above features all have different medians, quartiles,

and ranges – completely different distributions. We cannot

compare these features to each other.

X = df.drop(columns=['Wine']) # features dataframe

y = df['Wine'] # target dataframe

X.describe()

Feature selection using variance

• One method we can use to scale all features is the Robust Scaler

(see previous lab) which is not highly affected by outliers:

• We use the VarianceThreshold with

a threshold 0.35 on the X_scaled:

from sklearn.preprocessing import RobustScaler

transformer = RobustScaler().fit(X)

scaled_data = transformer.transform(X)

X_scaled = pd.DataFrame(scaled_data, columns=X.columns)

from sklearn.feature_selection import VarianceThreshold

selector = VarianceThreshold(threshold=0.35)

Learn variances from X_scaled

_ = selector.fit(X_scaled)

Get a mask (or integer index if indices=True is set) of the features selected

mask = selector.get_support()

print(mask)

[True True True True True False True True True True True False True]

False if the corresponding feature is selected to be dropped: Phenols and OD have variance <= 0.35

Feature selection using feature importance

• A set of predictive techniques (ensemble methods) can be used to

assign scores to input features as part of the training phase. Each

score indicates the relative importance of each feature when making

a prediction

– Ensemble methods is a machine learning technique that combines several

base models in order to produce one optimal predictive model (see more

here)

• Feature importance scores can be calculated both for problems that

involve predicting a numerical value, called regression, and those

problems that involve predicting a class label, called classification

(studied thoroughly in Labs 8-9)

https://scikit-learn.org/stable/modules/ensemble.html

Feature selection using feature importance

• The scores are useful and can be used in a range of situations in a

predictive modeling problem, such as:

• Better understanding the data (which feature(s) are important, i.e. influencing

the decision-making process)

• Reducing the number of input features (choosing the most important features

of the dataset for training)

Feature selection using feature importance

• Get feature importance by training an ensemble predictive

technique (ensemble classifiers/regressors)

– Fit (train) predictive technique on the whole set of features

– Weights are assigned to each feature

Feature Importance using ExtraTreeClassifier

from sklearn.ensemble import ExtraTreesClassifier

Build an estimator (forest of trees) and compute the feature importances

estimator = ExtraTreesClassifier(n_estimators=100, max_features= 13, random_state=0)

estimator.fit(X,y)

Lets get the feature importances.

Features with high importance score higher.

importances = estimator.feature_importances_

http://scikit-learn.org/stable/modules/ensemble.html#forest

Feature selection using feature importance

Note: It is recommended to evaluate various classifiers or regressors

belonging to the sklearn.ensemble module. You may have to play with their

input parameters for better understanding of the behavior of each model.

Feature ranking:

1. feature 12 - Proline (0.240954)

2. feature 11 - OD (0.162438)

3. feature 6 - Flavanoids (0.149339)

4. feature 0 - Alcohol (0.127384)

5. feature 9 - Color_intensity (0.125520)

6. feature 10 - Hue (0.072550)

7. feature 5 - Phenols (0.031640)

8. feature 1 - Malic_acid (0.027186)

9. feature 4 - Mg (0.021927)

10. feature 3 - Acl (0.013679)

11. feature 8 - Proanth (0.012320)

12. feature 2 - Ash (0.010575)

13. feature 7 - Nonflavanoid_phenols

(0.004489)

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble

Feature selection using feature importance

• Instead of training an ensemble method only once, we can run the

training process multiple times.

• Recursive Feature Elimination (RFE) aims at selecting features by

recursively eliminating the worst feature(s) – having lowest

importance – at every iteration.

Current set of features = all features

Repeat

1. Predictive ensemble technique trained on current set of

features, weights are assigned to each

2. Feature whose absolute weight is the smallest is pruned

from current set features

Until desired number of features is reached

Feature selection using feature importance

from sklearn.feature_selection import RFE

estimator = ExtraTreesClassifier(n_estimators=100,

random_state=0)

keep the 5 most informative features

step corresponds to the (integer) number

of features to remove at each iteration

selector = RFE(estimator, n_features_to_select=5, step=1)

selector = selector.fit(X, y)

print(list(selector.support_))

print(list(selector.ranking_))

[True, False, False, False, False, False, True, False,

False, True, False, True, True]

[1, 3, 8, 5, 6, 4, 1, 9, 7, 1, 2, 1, 1]

0 6 9 11 12

Important features

Feature selection using predictive performance of ML model

• Forward selection/Backward elimination are two repetitive methods of

stepwise selecting important features:

– Use a predictive technique (any ML model) and a criterion (scoring) function to

measure performance (effectiveness in making predictions):

• Classification problems: accuracy (% of correct predictions), f1, precision, recall

• Regression problems: R2, Mean Squared Error (MSE), Root Mean Squared Error (RMSE)

– Split dataset (train/test), train model on train data, make predictions on test

data

– Select features that maximize / minimize the criterion function

– Termination point: reach desired number of features

https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules

Feature selection using predictive performance of ML model

• Forward selection:

– Start with a null model (with no

features)

– Add a feature that maximizes criterion

function upon insertion

– Repeat procedure until termination

criterion is satisfied

• Backward elimination:

– Start with all features in the model

(full model)

– Remove a feature that has the

minimum impact (maximizes criterion

function) upon removal

– Repeat procedure until termination

criterion is satisfied

Feature selection using predictive performance of ML model

Examples

• Example 1 – Forward Selection

– Use the wine dataset to choose the “best” 5 (out of 13) features

– Classification method: k-nearest neighbors

• Distance-based algorithm: achieves better results when input features are scaled

– Criterion (scoring) function: accuracy

– Initialize classifier

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=4)

Examples

– Initialize and fit Sequential Forward Selection model

• Can be used for both classification and regression problems
from mlxtend.feature_selection import SequentialFeatureSelector as SFS

sfs = SFS(knn, # scikit-learn classifier

 k_features=5, # termination point

 forward=True, # forward selection

 floating=False,

 verbose=2, # logging level (messages printed when running)

 scoring='accuracy', # criterion function

 n_jobs=-1, # number of CPUs to use, -1 → all CPUs

 cv=10) # 10-fold cross validation: resampling method

that uses different portions of the data to test and train a model on different iterations. Here, we have 10

iterations per feature selection round (more details in the next labs).

perform feature selection & learn model from training data

sfs = sfs.fit(X_scaled, y)

Results

Features: 1/5 -- score: 0.7810457516339869

Features: 2/5 -- score: 0.9212418300653595

Features: 3/5 -- score: 0.9493464052287581

Features: 4/5 -- score: 0.9552287581699346

Features: 5/5 -- score: 0.9663398692810456

Install mlxtend library. Run
conda install -c

conda-forge mlxtend

on Anaconda prompt prior

running this example

mean scores (over

10 iterations)

http://rasbt.github.io/mlxtend/api_subpackages/mlxtend.feature_selection/#sequentialfeatureselector
https://github.com/rasbt/mlxtend

Examples

– We can access the indices of the 5 best features directly via the
k_feature_idx_ attribute and the prediction score via k_score_

• Example 2 – Backward Elimination

print('\nSequential Forward Selection (k=5):')

print('Selected features:',sfs.k_feature_idx_) # (1, 4, 6, 9, 12)

print('Prediction score:',sfs.k_score_) # 0.9663398692810456

sbs = SFS(knn, # scikit-learn classifier

 k_features=5, # termination criterion

 forward=False, # backward elimination

 floating=False,

 scoring='accuracy', # criterion function

 cv=10, # 10-fold cross validation

 n_jobs=-1)

sbs = sbs.fit(X_scaled, y)

print('\nSequential Backward Selection (k=5):')

print('Selected features:',sbs.k_feature_idx_)# (0, 2, 8, 9, 12)

print('Prediction (CV) score:',sbs.k_score_) # 0.9607843137254901

Examples

• Example 3 – Plotting the results

from mlxtend.plotting import

plot_sequential_feature_selection as plot_sfs

import matplotlib.pyplot as plt

sfs = SFS(knn,

 k_features=5,

 forward=True,

 floating=False,

 scoring='accuracy',

 verbose=2,

 cv=10,

 n_jobs=-1)

sfs = sfs.fit(X_scaled, y)

fig1 = plot_sfs(sfs.get_metric_dict(), kind='std_dev')

plt.ylim([0.8, 1])

plt.title('Sequential Forward Selection (w. StdDev)')

plt.grid()

plt.show()

Examples

• Example 3 – Plotting the results
Features: 1/5 -- score: 0.7810457516339869

Features: 2/5 -- score: 0.9212418300653595

Features: 3/5 -- score: 0.9493464052287581

Features: 4/5 -- score: 0.9552287581699346

Features: 5/5 -- score: 0.9663398692810456

Examples

• Example 4 – Selecting the "best" feature combination in k-range

– Set k_features to a tuple (min_k, max_k)

– SFS selects the best feature combination of size min_k to max_k inclusive that

scored best during cross validation

– In forward selection

• It also returns the best score achieved for every feature subset from 1 feature to max_k

features, i.e. for k_features=(5,9) it returns the best score achieved for 1 feature, 2

features, … up to 9 features

– In backward selection

• It also returns the best score achieved for every feature subset from all features down to

min_k features, i.e. k_features=(5,9) the best score achieved for 13 features (for the wine

dataset), 12 features, …, down to 5 features

Examples

• Example 4 – Selecting the "best" feature combination in k-range

X, y = wine_data()

knn = KNeighborsClassifier(n_neighbors=4)

sfs_range = SFS(estimator=knn,

k_features=(2, 13),

 forward=True,

 floating=False,

 scoring='accuracy',

 cv=10,

 n_jobs=-1)

sfs_range = sfs_range.fit(X_scaled, y)

print('best combination (ACC: %.3f): %s\n' % (sfs_range.k_score_,

sfs_range.k_feature_idx_))

print('all subsets:\n', sfs_range.subsets_)

plot_sfs(sfs_range.get_metric_dict(), kind='std_err');

• Example 4 – Selecting the "best" feature combination in k-range

Examples

best combination (ACC: 0.972): (1, 4, 6, 9, 10, 11, 12)

X_scaled_selected = sfs_range.transform(X_scaled) # extract selected columns

SFS with regression problems

• Use appropriate estimator (regressor) and scoring function (e.g. R2,

RMSE etc.)

rf = RandomForestRegressor()

sfs_range = SFS(estimator=rf,

 k_features=(2, 13),

 forward=True,

 floating=False,

 scoring='r2', # or 'neg_root_mean_squared_error'

 cv=10,

 n_jobs=-1)

sfs_range = sfs_range.fit(X, y) # no need for scaled features in tree-based models

print('best combination (R2: %.3f): %s\n' % (sfs_range.k_score_,

sfs_range.k_feature_idx_))

print('all subsets:\n', sfs_range.subsets_)

plot_sfs(sfs_range.get_metric_dict(), kind='std_err');

Feature extraction

• Build a new set of features from the original feature set

• Differs from feature selection in two ways:

– Instead of choosing subset of features

– Create new feature set (dimensions)

Feature extraction

• Idea:

– Given data points in d-dimensional space,

– Project into lower k-dimensional space (k<d) while preserving as much

information as possible

– In particular, choose projection that minimizes the squared error in

reconstructing original data

• Methods:

– Principal Component Analysis (PCA)
• http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

– Singular Vector Decomposition (SVD)
• https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.svds.html

• http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html

– Linear Discriminant Analysis (LDA)
• http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.svds.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html

• PCA tries to identify a set of new directions (new features) called

principal components that account for the most variance (information)

• Principal components (new directions/features) are the linear

combinations of the old directions (old features)

PCA

Excellent explanation about PCA: http://stats.stackexchange.com/questions/2691/making-sense-

of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579

The eigenvectors and eigenvalues of a covariance

(or correlation) matrix represent the “core” of a PCA:

The eigenvectors (principal components) determine

the directions of the new feature space, and the

eigenvalues determine their magnitude. In other

words, the eigenvalues explain the variance of the

data along the new feature axes.

http://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579
http://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579

PCA Example

• Dataset: 2-D observations

– blue dots

• Find the best one dimension that

converts dataset to 1-D observations

• Best dimension:

• Line that points to the magenta ticks

• Red dots are projections of the blue dots

• Projection position is the new value of the (1-D) observation on the new dimension

• Maximizes variance (spread of red dots)

• Increased differentiation among new 1-D observations

• Minimizes reconstruction error (red line)

• Error = |position of blue dot – projection position of blue dot|

PCA considerations

• PCA assumes that the data to be transformed is linearly separable
and works well only when the relationship between features is linear

• Does not take into account non-normalities of the data, such as skewness or
discreteness (thus PCA is inappropriate for discrete numerical values) → use
unskewing techniques on skewed features prior PCA (Lab4)

• PCA is sensitive to the scale of the features

• variance of features with larger scales will dominate the principal components
unless the data is standardized → use standard scaler prior PCA (Lab 4)

• PCA requires that the data (features) is mean-centered (mean=0)

• for a single feature, this is done by subtracting the mean of that feature from
each data point → done by PCA in advance for all features

• PCA helps when the features in your dataset are correlated and you
want to remove the redundancy in the data by transforming it into
uncorrelated principal components

• Is there a rule of thumb for finding the “best” number of PCA

components (features)?

• A useful measure is to pick the k features that explain a high

percentage of the total data variance

– can be done by plotting the explained variance ratio rk as a function of k

PCA

Example:

Perform PCA on the SCALED wine

dataset with 13 features to extract 10

new features (10 principal

components)

Some observations:

• First 3 new features explain

together 62% of the total variance

• Each of the last 3 new features

explain around 2% of the total

variance (can be omitted)

• SVD is a generic way of breaking down a big matrix (dataset with

features) into 3 smaller, more useful pieces

• SVD breaks a matrix (A) into three matrices: A=UΣVT

• Matrices U and V contain information about the "directions" or “features" of

the original dataset – U contains info about rows, V info about columns

• Σ (Sigma) is diagonal matrix with singular values. These are like "weights"

that tell us how important certain directions (in U and V) are.

• So if your original matrix (dataset) is too big and complicated, you

can use just the most important singular values (the biggest ones in

Σ) and their corresponding vectors from U and V

• This helps you simplify the data while keeping most of its essential

information.

SVD

SVD considerations

• SVD is a generic way of decomposing a matrix for purposes like

dimensionality reduction, latent semantic analysis (LSA*) in text

processing without necessarily focusing on variance

• It works well with sparse matrices, where many of the entries are

zero (e.g., document-term frequency matrices in text processing)

• SVD does not require data to be mean-centered

(*) LSA uses SVD to uncover hidden structures in text data by reducing the dimensionality of the document-term matrix

and finding relationships between terms and documents that may not be immediately apparent from the raw data

Supervised vs Unsupervised

• SVD and PCA are unsupervised methods

– Both ignore the target variable (e.g. class labels)

• LDA is a supervised method

– Takes into account class labels (target variable), suitable for classification

problems

– identifies new (directions) features that best separate two or more classes

– Note: the maximum number of new features = number of classes – 1

• Example: if the dataset contains observations belonging to 3 classes (i.e. 3 unique

values in the target variable) the maximum number of new features can be 2.

Python-implemented algorithms

• Scikit-learn PCA (centers data, does not support sparse matrices)

• SCiPy SVD (works for sparse matrices with many zeros)

• Scikit-learn TruncatedSVD: (works for large sparse matrices

efficiently without making memory explode)

Feature Extraction in Python

• Dataset: Iris dataset
– 150 flower observations

– 4 features

• sepal length, sepal width, petal length, petal width

– class variable

• 0 (setosa), 1 (versicolor), 2 (virginica)

• Perform dimensionality reduction using TruncatedSVD, PCA and

LDA

– 4 to 2 features

Results – TruncatedSVD

TruncatedSVD explained

variance ratio (first two

components):

[0.52875361 0.44845576]

Results – PCA

PCA explained variance

ratio (first two

components):

[0.92461872 0.05306648]

Results – LDA

LDA explained variance

ratio (first two

components):

[0.9912126 0.0087874]

Importance evaluation in estimators
• There are several ways to get feature "importances". As often, there is no strict consensus about

what this word means.

• In scikit-learn, the importance is implemented as described in [1] (often cited, but unfortunately

rarely read...). It is sometimes called "gini importance" or "mean decrease impurity" and is

defined as the total decrease in node impurity (weighted by the probability of reaching that node

(which is approximated by the proportion of samples reaching that node)) averaged over all

trees of the ensemble.

• In the literature or in some other packages, you can also find feature importances implemented

as the "mean decrease accuracy". Basically, the idea is to measure the decrease in accuracy on

OOB data when you randomly permute the values for that feature. If the decrease is low, then

the feature is not important, and vice-versa.

• [1]: Breiman, Friedman, "Classification and regression trees", 1984.

	Slide 1: EPL448: Data Mining on the Web – Lab 7
	Slide 2: Feature selection & Feature extraction
	Slide 3: Feature selection
	Slide 4: Feature selection using correlation
	Slide 5: Feature selection using correlation
	Slide 6: Feature selection using variance
	Slide 7: Feature selection using variance
	Slide 8: Feature selection using variance
	Slide 9: Feature selection using variance
	Slide 10: Feature selection using feature importance
	Slide 11: Feature selection using feature importance
	Slide 12: Feature selection using feature importance
	Slide 13: Feature selection using feature importance
	Slide 14: Feature selection using feature importance
	Slide 15: Feature selection using feature importance
	Slide 16: Feature selection using predictive performance of ML model
	Slide 17: Feature selection using predictive performance of ML model
	Slide 18: Feature selection using predictive performance of ML model
	Slide 19: Examples
	Slide 20: Examples
	Slide 21: Examples
	Slide 22: Examples
	Slide 23: Examples
	Slide 24: Examples
	Slide 25: Examples
	Slide 26: Examples
	Slide 27: SFS with regression problems
	Slide 28: Feature extraction
	Slide 29: Feature extraction
	Slide 30: PCA
	Slide 31: PCA Example
	Slide 32: PCA considerations
	Slide 33: PCA
	Slide 34: SVD
	Slide 35: SVD considerations
	Slide 36: Supervised vs Unsupervised
	Slide 38: Python-implemented algorithms
	Slide 39: Feature Extraction in Python
	Slide 40: Results – TruncatedSVD
	Slide 41: Results – PCA
	Slide 42: Results – LDA
	Slide 43: Importance evaluation in estimators

